

Distributed Hydropower Models in StochasticPrograms.jl

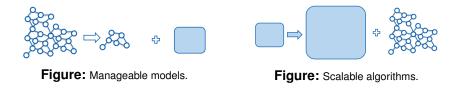
Martin Biel

KTH - Royal Institute of Technology

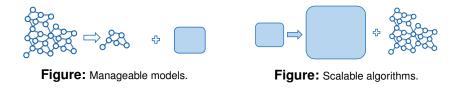
July 30, 2019

Simulation of hydro power operations for decision-support

- Simulation of hydro power operations for decision-support
 - Future electricity prices unknown
 - Irregular power production: solar and wind
 - Nuclear power phase-out


- Simulation of hydro power operations for decision-support
 - Future electricity prices unknown
 - Irregular power production: solar and wind
 - Nuclear power phase-out
- · Common: trade-off between accuracy and computation time

- Simulation of hydro power operations for decision-support
 - Future electricity prices unknown
 - Irregular power production: solar and wind
 - Nuclear power phase-out
- Common: trade-off between accuracy and computation time
- Aim: provide reliable decision-support in real time



- Simulation of hydro power operations for decision-support
 - Future electricity prices unknown
 - Irregular power production: solar and wind
 - Nuclear power phase-out
- · Common: trade-off between accuracy and computation time
- · Aim: provide reliable decision-support in real time
 - Accurate models: optimal model reductions
 - Fast computations: scalable algorithms on commodity hardware

- Simulation of hydro power operations for decision-support
 - Future electricity prices unknown
 - Irregular power production: solar and wind
 - Nuclear power phase-out
- · Common: trade-off between accuracy and computation time
- Aim: provide reliable decision-support in real time
 - Accurate models: optimal model reductions
 - Fast computations: scalable algorithms on commodity hardware

Stochastic programming for hydro power operations

- · Optimal orders on the day-ahead market
- Maintenance scheduling
- Long-term investments
- Wind/solar uncertainties

. . .

Stochastic programming for hydro power operations

- Optimal orders on the day-ahead market
- Maintenance scheduling
- Long-term investments
- Wind/solar uncertainties
- ...

In short

- Accurate decision-support under uncertainty
- Variety of parallel decomposition schemes

• StochasticPrograms.jl: framework for stochastic programming

- StochasticPrograms.jl: framework for stochastic programming
- · Formulate, solve and analyze stochastic models

- StochasticPrograms.jl: framework for stochastic programming
- Formulate, solve and analyze stochastic models
- A collection of structure-exploiting algorithms

- StochasticPrograms.jl: framework for stochastic programming
- Formulate, solve and analyze stochastic models
- A collection of structure-exploiting algorithms
- Distributed-memory implementation for large-scale models

- StochasticPrograms.jl: framework for stochastic programming
- Formulate, solve and analyze stochastic models
- A collection of structure-exploiting algorithms
- Distributed-memory implementation for large-scale models
- Collection of (hydroelectric) energy planning models

- StochasticPrograms.jl: framework for stochastic programming
- Formulate, solve and analyze stochastic models
- A collection of structure-exploiting algorithms
- Distributed-memory implementation for large-scale models
- Collection of (hydroelectric) energy planning models

Efficiently model and solve stochastic problems using expressive syntax

- StochasticPrograms.jl showcase
- · Real-world application: the day-ahead problem
- Numerical experiments
- Final remarks

• Flexible and expressive problem definition

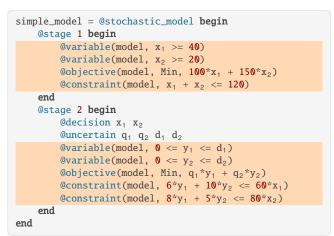
- Flexible and expressive problem definition
- Deferred model instantiation
- Scenario data injection

- Flexible and expressive problem definition
- Deferred model instantiation
- Scenario data injection
- Variety of tools for analyzing models
 - VSS
 - EVPI
 - Confidence intervals
 - ▶ ...

- Flexible and expressive problem definition
- Deferred model instantiation
- Scenario data injection
- Variety of tools for analyzing models
 - VSS
 - EVPI
 - Confidence intervals
 - ▶ ...
- Memory-distributed

- Flexible and expressive problem definition
- Deferred model instantiation
- Scenario data injection
- Variety of tools for analyzing models
 - VSS
 - EVPI
 - Confidence intervals
 - ▶ ...
- Memory-distributed
- Minimize data passing
 - Lightweight sampler objects to generate scenario data
 - Lightweight model recipes to generate second stage problems

- Flexible and expressive problem definition
- Deferred model instantiation
- Scenario data injection
- Variety of tools for analyzing models
 - VSS
 - EVPI
 - Confidence intervals
 - ▶ ...
- Memory-distributed
- Minimize data passing
 - Lightweight sampler objects to generate scenario data
 - Lightweight model recipes to generate second stage problems
- Interface to structure-exploiting (distributed) solver algorithms
 - L-shaped variants (LShapedSolvers.jl)
 - Progressive-hedging variants (ProgressiveHedgingSolvers.jl)



 $\begin{array}{ll} \underset{x_{1},x_{2} \in \mathbb{R}}{\text{minimize}} & 100x_{1} + 150x_{2} + \mathbb{E}_{\omega}[Q(x_{1},x_{2},\xi)] \\ \text{s.t.} & x_{1} + x_{2} \leq 120 \\ & x_{1} \geq 40 \\ & x_{2} \geq 20 \end{array}$

where

$$Q(x_1, x_2, \xi) = \min_{\substack{y_1, y_2 \in \mathbb{R} \\ y_1, y_2 \in \mathbb{R} \\ }} q_1(\xi)y_1 + q_2(\xi)y_2$$

s.t. $6y_1 + 10y_2 \le 60x_1$
 $8y_1 + 5y_2 \le 80x_2$
 $0 \le y_1 \le d_1(\xi)$
 $0 \le y_2 \le d_2(\xi)$

```
simple_model = @stochastic_model begin
    @stage 1 begin
         @variable(model, x_1 \ge 40)
         @variable(model, x_2 \ge 20)
         @objective(model. Min. 100^{*}x_{1} + 150^{*}x_{2})
         (constraint(model, x_1 + x_2 \le 120))
    end
    @stage 2 begin
         (add ecision x_1 x_2)
         Quncertain q_1 q_2 d_1 d_2
         @variable(model, 0 \le y_1 \le d_1)
         @variable(model, 0 \le y_2 \le d_2)
         @objective(model, Min, q_1 * y_1 + q_2 * y_2)
         @constraint(model, 6*y_1 + 10*y_2 \le 60*x_1)
         (constraint(model, 8*y_1 + 5*y_2 <= 80*x_2))
    end
end
```


JuMP syntax

<pre>simple_model = @stochastic_model begin @stage 1 begin @variable(model, x₁ >= 40) @variable(model, x₂ >= 20) @objective(model, Min, 100*x₁ + 150*x₂) @constraint(model, x₁ + x₂ <= 120)</pre>		
<pre>end @stage 2 begin @decision x₁ x₂ @uncertain q₁ q₂ d₁ d₂ @variable(model, 0 <= y₁ <= d₁) @variable(model, 0 <= y₂ <= d₂) @objective(model, Min, q₁*y₁ + q₂*y₂) @constraint(model, 6*y₁ + 10*y₂ <= 60*x₁) @constraint(model, 8*y₁ + 5*y₂ <= 80*x₂) end end</pre>	minimize _{x1,x2} ∈ℝ s.t.	$100x_1 + 150x_2$ $x_1 + x_2 \le 120$ $x_1 \ge 40$ $x_2 \ge 20$

```
simple_model = @stochastic_model begin
    @stage 1 begin
         @variable(model, x_1 \ge 40)
         @variable(model, x_2 \ge 20)
         (\text{objective}(\text{model}, \text{Min}, 100^*x_1 + 150^*x_2))
         (constraint(model, x_1 + x_2 \le 120))
    end
    @stage 2 begin
         (adecision x_1 x_2)
         Quncertain q_1 q_2 d_1 d_2
         @variable(model, 0 \le y_1 \le d_1)
         @variable(model, 0 \le y_2 \le d_2)
         @objective(model. Min. a_1 * v_1 + a_2 * v_2)
         @constraint(model, 6*y_1 + 10*y_2 <= 60*x_1)
         (constraint(model, 8*y_1 + 5*y_2 <= 80*x_2))
    end
end
```

 $\begin{array}{l} \underset{y_1, y_2 \in \mathbb{R}}{\text{minimize}} \ q_1(\xi) \ y_1 + \ q_2(\xi) \ y_2 \\ \text{s.t.} \ 6y_1 + 10y_2 \le 60 \ x_1 \\ 8y_1 + 5y_2 \le 80 \ x_2 \\ 0 \le y_1 \le \ d_1(\xi) \\ 0 \le y_2 \le \ d_2(\xi) \end{array}$

```
simple_model = @stochastic_model begin
    @stage 1 begin
         @variable(model, x_1 \ge 40)
         @variable(model, x_2 \ge 20)
         @objective(model. Min. 100^{*}x_{1} + 150^{*}x_{2})
         (constraint(model, x_1 + x_2 \le 120))
    end
    @stage 2 begin
         (adecision x_1 x_2)
         Quncertain q_1 q_2 d_1 d_2
         @variable(model, 0 \le y_1 \le d_1)
         @variable(model, 0 \le y_2 \le d_2)
         @objective(model, Min, q_1 * y_1 + q_2 * y_2)
         @constraint(model, 6*y_1 + 10*y_2 \le 60*x_1)
         (constraint(model, 8*y_1 + 5*y_2 <= 80*x_2))
    end
end
```

 $\begin{array}{l} \underset{y_{1},y_{2} \in \mathbb{R}}{\text{minimize}} \ q_{1}(\xi) \ y_{1} + \ q_{2}(\xi) \ y_{2} \\ \text{s.t.} \ 6y_{1} + 10y_{2} \le 60 \ x_{1} \\ 8y_{1} + 5y_{2} \le 80 \ x_{2} \\ 0 \le y_{1} \le \ d_{1}(\xi) \\ 0 \le y_{2} \le \ d_{2}(\xi) \end{array}$

```
simple_model = @stochastic_model begin
    @stage 1 begin
         @variable(model, x_1 \ge 40)
         @variable(model, x_2 \ge 20)
         @objective(model. Min. 100^{*}x_{1} + 150^{*}x_{2})
         (constraint(model, x_1 + x_2 \le 120))
    end
    @stage 2 begin
         (add ecision x_1 x_2)
         Quncertain q_1 q_2 d_1 d_2
         @variable(model, 0 \le y_1 \le d_1)
         @variable(model, 0 \le y_2 \le d_2)
         @objective(model, Min, q_1 * y_1 + q_2 * y_2)
         @constraint(model, 6*y_1 + 10*y_2 \le 60*x_1)
         (constraint(model, 8*y_1 + 5*y_2 <= 80*x_2))
    end
end
```

 $\begin{array}{l} \underset{y_{1},y_{2} \in \mathbb{R}}{\text{minimize}} \mathbf{q}_{1}(\xi) \ y_{1} + \ \mathbf{q}_{2}(\xi) \ y_{2} \\ \text{s.t.} \ 6y_{1} + 10y_{2} \leq 60 \ x_{1} \\ 8y_{1} + 5y_{2} \leq 80 \ x_{2} \\ 0 \leq y_{1} \leq \ \mathbf{d}_{1}(\xi) \\ 0 \leq y_{2} \leq \ \mathbf{d}_{2}(\xi) \end{array}$

StochasticPrograms.jl - Discrete distribution

```
      s_1 = Scenario(q_1 = -24.0, q_2 = -28.0, d_1 = 500.0, d_2 = 100.0, probability = 0.4); \\       s_2 = Scenario(q_1 = -28.0, q_2 = -32.0, d_1 = 300.0, d_2 = 300.0, probability = 0.6); \\       simple_discrete = instantiate(simple_model, [s_1,s_2])
```

```
Stochastic program with:
```

- * 2 decision variables
- * 2 recourse variables
- * 2 scenarios of type Scenario
- Solver is default solver


```
print(simple discrete)
 First - stage
Min 100 x1 + 150 x2
Subject to
 X_1 + X_2 \leq 120
X_1 \ge 4\overline{0}
x_2 \ge 20
 Second - stage
_____
Subproblem 1 (p = 0.40):
Min - 24 y<sub>1</sub> - 28 y<sub>2</sub>
Subject to
 -60 x_1 + 6 y_1 + 10 y_2 \le 0
 -80 x_2 + 8 y_1 + 5 y_2 \le 0
 0 \leq y_{1} \leq 500
 0 \le y_2 \le 100
Subproblem 2 (p = 0.60):
Min - 28 y<sub>1</sub> - 32 y<sub>2</sub>
Subject to
 6 y_1 + 10 y_2 - 60 x_1 \le 0
 8 y_1 + 5 y_2 - 80 x_2 \le 0
 0 \le V_1 \le 300
 0 \le y_2 \le 300
```



```
dep = DEP(simple_discrete)
print(dep)
Min 100 x_1 + 150 x_2 - 9.6 y_{11} - 11.2 y_{21} - 16.8 y_{12} - 19.2 y_{22}
Subject to
 x_1 + x_2 \le 120
 6 y_{11} + 10 y_{21} - 60 x_1 \leq 0
 8 y_{11} + 5 y_{21} - 80 x_2 \leq 0
 6 y_{12} + 10 y_{22} - 60 x_1 \leq 0
 8 y_{12} + 5 y_{22} - 80 x_2 \leq 0
 x_1 \geq 40
 \mathbf{x}_2 \geq \mathbf{20}
 0 < v_{11} < 500
 0 \le y_{21} \le 100
 0 < v_{12} < 300
 0 \leq y_{22} \leq 300
```



```
vrp = VRP(simple_discrete, solver = glpk)
-855.83
vss = VSS(simple_discrete, solver = glpk)
286.92
evpi = EVPI(simple, solver = glpk)
662.92
```

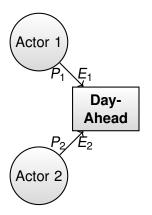


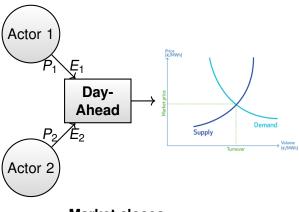
```
@sampler SimpleSampler = begin
    N::MvNormal
    SimpleSampler(\mu, \Sigma) = new(MvNormal(\mu, \Sigma))
    @sample Scenario begin
         x = rand(sampler.N)
         return Scenario(q_1 = x[1], q_2 = x[2], d_1 = x[3], d_2 = x[4])
    end
end
\mu = [-28, -32, 300, 300]
\Sigma = [2 \ 0.5 \ 0 \ 0]
     0.5100
     0 0 50 20
     0 0 20 301
sampler = SimpleSampler(\mu, \Sigma)
```


saa = SAA(simple_model, sampler, 100)

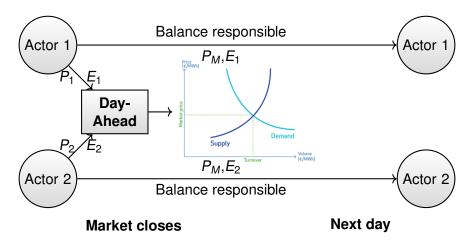
Stochastic program with:

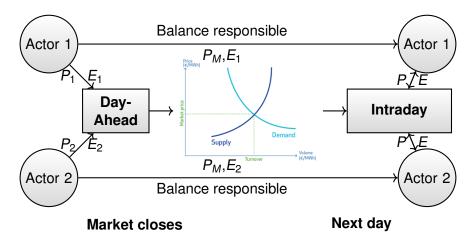
- * 2 decision variables
- * 2 recourse variables
- * 100 scenarios of **type** Scenario Solver is default solver


```
saa = SAA(simple_model, sampler, 100)
Stochastic program with:
 * 2 decision variables
 * 2 recourse variables
 * 100 scenarios of type Scenario
Solver is default solver
```



```
saa = SAA(simple_model, sampler, 100)
Stochastic program with:
 * 2 decision variables
 * 2 recourse variables
 * 100 scenarios of type Scenario
Solver is default solver
```

```
confidence_interval(simple_model, sampler; solver = glpk, confidence = 0.95,
        N = 100)
Confidence interval (p = 95%): [-2630.44 - -2389.31]
```



Market closes

Day-ahead problem - Electricity market

Day-ahead problem - Electricity market

Order Types

- Single Hourly Order
 - Price independent
 - Price Dependent
- Block Order
 - Regular
 - Linked
- Exclusive Group
- Flexible Order

Order Types

- Single Hourly Order
 - Price independent
 - Price Dependent
- Block Order
 - Regular
 - Linked
- Exclusive Group
- Flexible Order

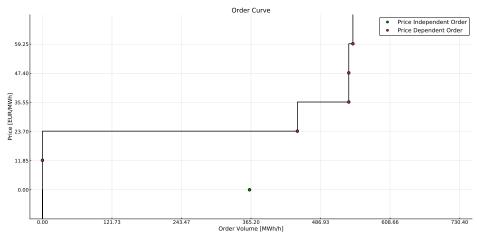


Figure: Single hourly order.

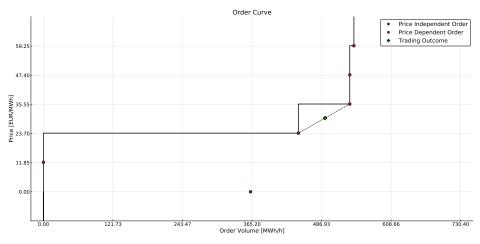
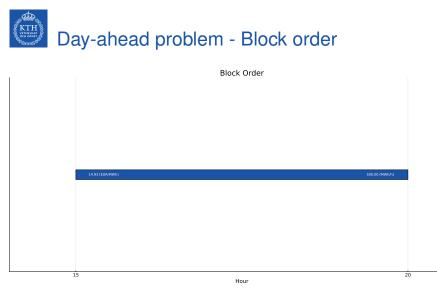



Figure: Interpolated energy volume for a given market price.

Figure: Block order between 15:00-20:00.

Martir		

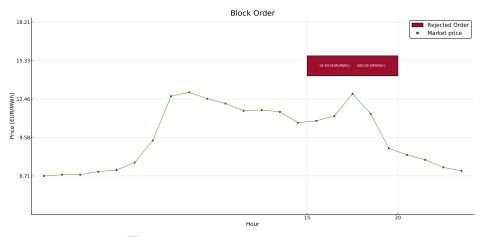


Figure: Rejected after market price settlement.

Martin	

Figure: Accepted after market price settlement.

Mar			

• Price taking hydropower producer trading in the NordPool market

- Price taking hydropower producer trading in the NordPool market
- All power stations in the Swedish river Skellefteälven

- Price taking hydropower producer trading in the NordPool market
- All power stations in the Swedish river Skellefteälven
- First stage: hourly electricity volume bids for the upcoming day
 - Single hourly orders
 - Block orders

- Price taking hydropower producer trading in the NordPool market
- All power stations in the Swedish river Skellefteälven
- First stage: hourly electricity volume bids for the upcoming day
 - Single hourly orders
 - Block orders
- Second stage: optimize day-ahead production
 - Bid dispatch after market price realization
 - Imbalances penalized in intraday market
 - Water flow conversation (including water travel time)
 - Maximize profits in the market and the future value of water

- Price taking hydropower producer trading in the NordPool market
- All power stations in the Swedish river Skellefteälven
- First stage: hourly electricity volume bids for the upcoming day
 - Single hourly orders
 - Block orders
- Second stage: optimize day-ahead production
 - Bid dispatch after market price realization
 - Imbalances penalized in intraday market
 - Water flow conversation (including water travel time)
 - Maximize profits in the market and the future value of water
- Full model defined in HydroModels.jl

Deterministic

- Physical parameters for power plants in Skellefteälven
- Trade regulations from NordPool

Uncertain

- Day-ahead prices from NordPool
- Mean water flows in Skellefteälven from SMHI

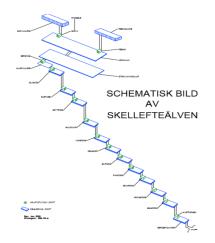


Figure: Schematic of the power stations in Skellefteälven.

Mar			

Day-ahead problem - Data

EUR/MWh

All hours are in CET/CEST. Last update: Today 12:42 CET/CEST

29-07-2019	SYS	SE1	SE2	SE3	SE4	FI	DK1	DK2	Oslo	Kr.sand	Bergen	Molde	Tr.heim	Tromsø	EE	LV	LT	AT	BE
00 - 01	36.96	36,96	36.96	36.96	36.96	36.96	35,77	36.96	36.96	36.96	36.96	36.96	36.96	36,96	36.96	36.96	36,96	35,77	35.77
01 - 02	35,18	35,18	35,18	35,18	35,18	35,18	34,05	35,18	35,18	35,18	35,18	35,18	35,18	35,18	35,18	35,18	35,18	34,05	34,05
02 - 03	33,73	33,73	33,73	33,73	33,73	33,73	33,73	33,73	33,73	33,73	33,73	33,73	33,73	33,73	33,73	33,73	33,73	32,65	32,65
03 - 04	34,37	34,37	34,37	34,37	34,37	34,37	34,37	34,37	34,37	34,37	34,37	34,37	34,37	34,37	34,37	34,37	34,37	32,46	25,59
04 - 05	34.80	34,80	34.80	34.80	34,80	34,80	34.80	34,80	34,80	34.80	34.80	34,80	34,80	34.80	34,80	34,80	34.80	32.70	24.33
05 - 06	36,41	36,41	36,41	36,41	36,41	36,41	35,43	36,41	36,41	36,41	36,41	36,41	36,41	36,41	36,41	36,41	36,41	35,55	34,85
06 - 07	39,93	39,77	39,77	39,77	39,77	55,32	40,75	39,77	39,77	39,77	39,77	39,77	39,77	39,77	55,32	55,32	55,32	40,82	39,60
07 - 08	41.08	40.55	40.55	40.55	51,95	66.78	51,95	51.95	40.55	40.55	40.55	40.55	40.55	40.55	66.78	66.78	66.78	53.50	39.90
08 - 09	41,60	40,82	40,82	40,82	57,40	74,17	57,40	57,40	40,82	40,82	40,82	40,82	40,82	40,82	74,17	74,17	74,17	60,08	45,32
09 - 10	41,89	41,21	41,21	41,21	51,51	71,89	51,51	51,51	41,21	41,21	41,21	41,21	41,21	41,21	77,36	77,36	77,36	52,08	47,08
10 - 11	42,01	41,48	41,48	41,48	48,84	69,77	48,84	48,84	41,43	41,43	41,43	41,48	41,48	41,48	77,33	77,33	77,33	50,20	44,93
11 - 12	42.10	41.56	41,56	41.56	48.29	76.85	48.29	48.29	41.56	41,56	41.56	41.56	41,50	41.56	77.34	77.34	77,34	49,94	43.57
12 - 13	42,08	41,46	41,46	41,46	47,35	73,26	47,35	47,35	41,46	41,46	41,46	41,46	41,46	41,46	78,91	78,91	78,91	48,95	42,76
13 - 14	41,61	41,37	41,37	41,37	45,72	64,63	45,72	45,72	40,31	40,31	40,31	41,37	41,37	41,37	80,07	80,07	80,07	48,20	38,89
14 - 15	41.47	41,21	41,21	41,21	45,30	63,68	45,30	45.30	40,03	40,03	40.03	41,21	41.21	41,21	77,43	77,43	77,43	48.92	35,32
15 - 16	40,98	41,00	41.00	41,00	45,13	61,61	45,13	45,13	39,67	39,67	39,67	41,00	41,00	41.00	76,28	76,28	76,28	48,91	34,02
16 - 17	40,99	40,85	40,85	40,85	44,95	60,00	44,95	44,95	40,16	40,16	40,16	40,85	40,85	40,85	60,00	60,00	60,00	47,54	37,78
17 - 18	41,19	40,92	40,92	40,92	45,21	56,05	45,21	45,21	40,92	40,92	40,92	40,92	40,92	40,92	56,05	56,05	56,05	45,21	45,21
18 - 19	41,51	41.05	41.05	41.05	49,50	60.09	49.50	49.50	41.05	41.05	41.05	41.05	41.05	41.05	60.09	60.09	60.09	49.50	48.05
19 - 20	41,27	40,81	40,81	40,81	60,74	60,67	60,74	60,74	40,81	40,81	40,81	40,81	40,81	40,81	60,74	60,74	60,74	58,22	52,99
20 - 21	40,95	40,69	40,69	40,69	56,07	55,36	60,50	60,50	40,69	40,69	40,69	40,69	40,69	40,69	56,07	56,07	56,07	57,80	52,17
21 - 22	40,45	40,39	40.39	40,39	51,96	51.96	53,23	53,23	40,39	40,39	40,39	40.39	40.39	40,39	51,96	51,96	51,96	51,90	49.12
22 - 23	39,99	40,08	40,08	40.08	43,02	43.02	49,38	49,38	40,08	40.08	40.08	40,08	40.08	40.08	43,02	43,02	43.02	49,38	49,38
23 - 00	39,32	39,39	39,39	39,39	39,39	39,39	43,25	43,25	39,39	39,39	39,39	39,39	39,39	39,39	39,39	39,39	39,39	43,25	43,25

Figure: Historical day-ahead prices 2013-2018 from NordPool.

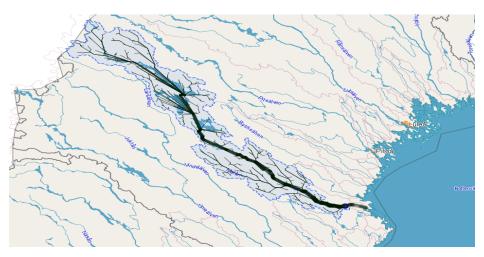


Figure: Mean water flow in Skellefteälven 1999-2018 from SMHI.

• Recurrent neural networks (GRU)

- Recurrent neural networks (GRU)
- Trained on price data and mean flow data separately

- Recurrent neural networks (GRU)
- Trained on price data and mean flow data separately
- Early stopping to prevent overfitting

- Recurrent neural networks (GRU)
- Trained on price data and mean flow data separately
- Early stopping to prevent overfitting
- Seasonality modeled through separate inputs to the network

- Recurrent neural networks (GRU)
- Trained on price data and mean flow data separately
- Early stopping to prevent overfitting
- Seasonality modeled through separate inputs to the network
- Driven by Gaussian noise

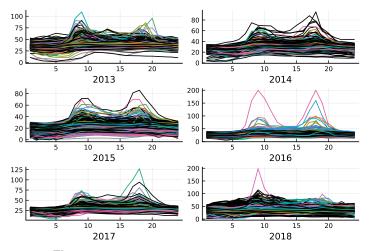


Figure: Price forecasts (black) and raw data (colored).

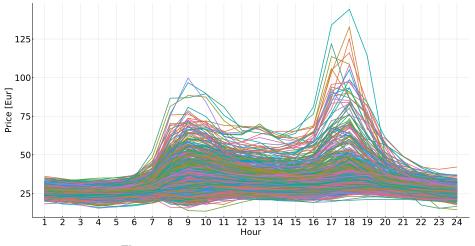


Figure: 1000 sampled price curves using RNN.

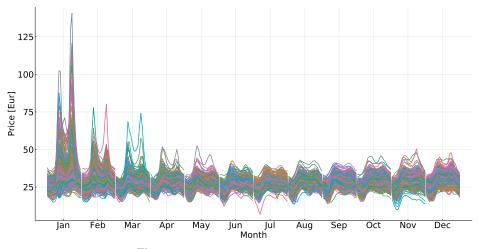


Figure: Price forecasts throughout a year.

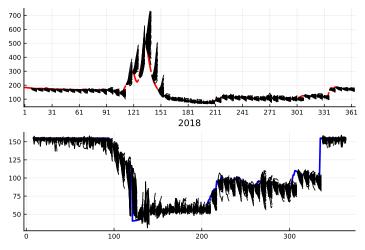


Figure: Mean flow forecasts (black) and raw data (colored).


```
@scenario DayAheadScenario = begin

ρ::PriceCurve{Float64}

    Q:Vector{Float64}
end
@sampler RecurrentDavAheadSampler = begin
    date::Date
    price forecaster::Forecaster{:price}
    flow forecaster::Forecaster{:flow}
    @sample DavAheadScenario begin
        prices = forecast(sampler.price_forecaster, month(sampler.date))
        flows = forecast(sampler.flow_forecaster, week(sampler.date))
        return DavAheadScenario(PriceCurve(prices), flows[1])
    end
end
```

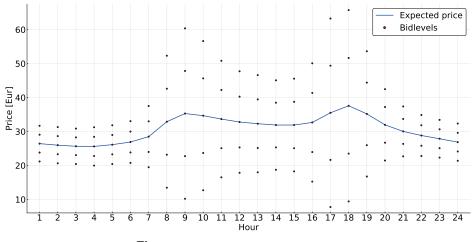



Figure: Available price points for bidding.

Marginal value of water has large impact on optimal dispatch

- Marginal value of water has large impact on optimal dispatch
- Sometimes optimal to accept imbalance penalty and save water

- Marginal value of water has large impact on optimal dispatch
- Sometimes optimal to accept imbalance penalty and save water
- Naive approach: production from excess water solved at mean price

- Marginal value of water has large impact on optimal dispatch
- Sometimes optimal to accept imbalance penalty and save water
- Naive approach: production from excess water solved at mean price
- Leads to crude order strategies

- Solve a dummy stochastic program:
 - First stage: water content in reservoirs
 - Second stage: optimize production over the coming week
 - Future prices and water inflows are uncertain

- Solve a dummy stochastic program:
 - First stage: water content in reservoirs
 - Second stage: optimize production over the coming week
 - Future prices and water inflows are uncertain
- L-shaped generates a polyhedral objective approximation

- Solve a dummy stochastic program:
 - First stage: water content in reservoirs
 - Second stage: optimize production over the coming week
 - Future prices and water inflows are uncertain
- L-shaped generates a polyhedral objective approximation
- Approximation used to model the expected future value of water

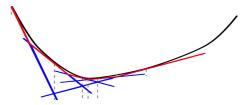


Figure: Polyhedral approximation.


```
@stage 1 begin
    @parameters begin
        horizon = horizon
        indices = indices
        data = data
    end
    @unpack hours, plants, bids, blockbids, blocks = indices
    @unpack hydrodata, regulations = data
    # Variables
    @variable(model, xt_i[t = hours] >= 0)
    @variable(model, xt_d[i = bids, t = hours] >= 0)
    @variable(model, xb[i = blockbids, b = blocks] >= 0)
    . . .
end
```



```
@stage 2 begin
    . .
    Quncertain \rho, V from \xi::DayAheadScenario
    @decision xt i xt d xb
    @variable(model, yt[t = hours] >= 0) # Hourly dispatch
    @variable(model. vb[b = blocks] >= ∅) # Block dispatch
    @variable(model, z_up[t = hours] >= 0) # Power bought from intraday
    @variable(model, z_do[t = hours] >= 0) # Power sold to intraday
    @variable(model, 0 <= Q[p = plants, t = hours] <= 0 # Water discharge</pre>
    @variable(model, S[p = plants, t = hours] >= 0) # Spillage
    (variable(model, Qf[p = plants, t = hours] >= 0) # Incoming discharge
    @variable(model, Sf[p = plants, t = hours] >= 0) # Incoming spillage
    @variable(model, 0 <= M[p = plants, t = hours] <= M # Reservoir content</pre>
    @variable(model. H[t = hours] >= 0) # Power production
    . . .
    @objective(model, Max, net_profit + value_of_stored_water)
    . . .
```



```
# Bid-dispatch links
@constraint(model, hourlybids[t = hours],
            yt[t] == interpolate(p[t], bidlevels, xt_d[t]) + xt_i[t]
@constraint(model, bidblocks[b = blocks],
                vb[b] == sum(xb[i,b] for i = accepted blocks(b))
# Hydrological balance
@constraint(model, hydro_constraints[p = plants, t = hours],
            # Previous reservoir content
            M[p,t] == (t > 1 ? M[p,t-1] : M_0[p])
            # Inflow
            + sum(Qf[i,t]+Sf[i,t] for i = upstream_plants[p])
            # Local inflow
            -[α]V +
            # Outflow
            -(0[p.t] + S[p.t])
```

. . .


```
# Production
@constraint(model, production[t = hours],
            H[t] == sum(hydrodata[p].\mu[s]*Q[p,s,t]
                        for p = plants, s = segments)
# Load balance
@constraint(model, loadbalance[t = hours],
            yt[t] + sum(yb[b] for b = blocks[t]) - H[t] == z_up[t] - z_do[t]
# Water travel time
. . .
# Water value
@constraint(model, water_value_approximation[c = 1:ncuts(water_value)],
            sum(water_value[c][p]*M[p,nhours(horizon)]
                for p in plants)
            + sum(W[i]
                  for i in cut_indices(water_value[c]))
            >= cut lb(water value[c]))
```

Martin Biel (KTH)

end

• VSS typically low in day-ahead problems

- VSS typically low in day-ahead problems
- Generate tight confidence intervals trough sequential SAA algorithm

- VSS typically low in day-ahead problems
- Generate tight confidence intervals trough sequential SAA algorithm
- Ensure statistically significant VSS

- VSS typically low in day-ahead problems
- Generate tight confidence intervals trough sequential SAA algorithm
- Ensure statistically significant VSS
- SAA instances of ~2000 scenarios required to reach this bound
 - ~5 million variables
 - ~3.3 million constraints

Sequential SAA

- Lower bound: solve M SAA models of size N
- Upper bound: decision evaluation on T SAA models of size $\tilde{N} > N$
- Increase *N* iteratively until confidence interval is tight enough

Sequential SAA

- Lower bound: solve M SAA models of size N
- Upper bound: decision evaluation on T SAA models of size $\tilde{N} > N$
- Increase *N* iteratively until confidence interval is tight enough

Distributed L-shaped

- Regularization
 - Trust-regions
 - Level-sets
 - ▶ ...
- Aggregation
 - Static
 - Dynamic
 - Clustering
 - ...

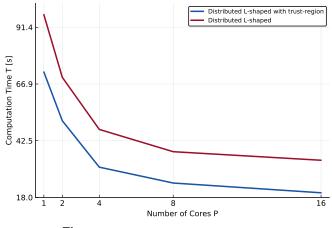


Figure: Distributed L-shaped performance.

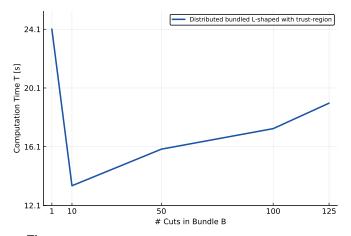


Figure: Distributed L-shaped performance using aggregation.

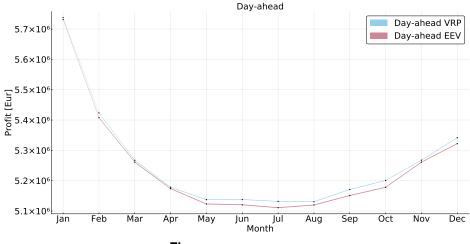
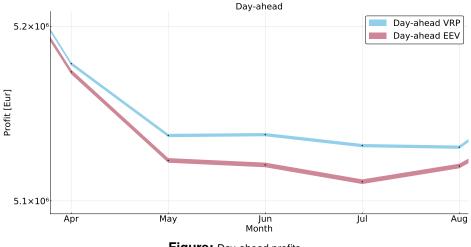



Figure: Day-ahead profits.

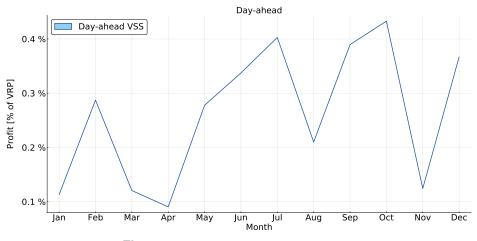


Figure: Day-ahead value of stochastic solution.

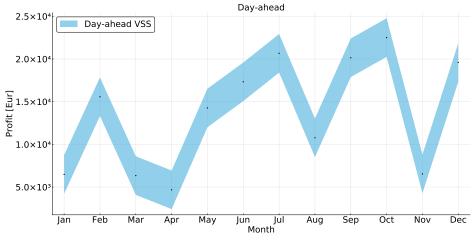


Figure: Day-ahead value of stochastic solution.

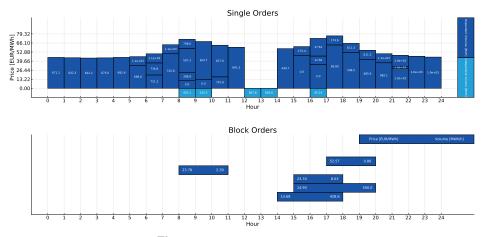


Figure: Day-ahead order strategy.

Figure: Day-ahead single hourly order strategy.



Figure: Result of single order strategy after realized market price.



Figure: Result of complete order strategy after realized market price.

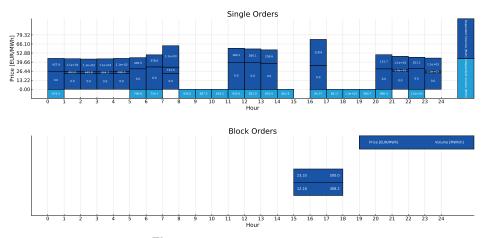


Figure: Deterministic order strategy.

VSS linked to imbalance penalties in the intraday market

- VSS linked to imbalance penalties in the intraday market
- Results are only as accurate/useful as the water valuation

- VSS linked to imbalance penalties in the intraday market
- Results are only as accurate/useful as the water valuation
- Model improvements required.

- VSS linked to imbalance penalties in the intraday market
- Results are only as accurate/useful as the water valuation
- Model improvements required.
- Proof of concept for large-scale models in StochasticPrograms.jl

- VSS linked to imbalance penalties in the intraday market
- Results are only as accurate/useful as the water valuation
- Model improvements required.
- Proof of concept for large-scale models in StochasticPrograms.jl

Outlook on future/ongoing work

• Formulate new energy planning models in StochasticPrograms.jl

- VSS linked to imbalance penalties in the intraday market
- Results are only as accurate/useful as the water valuation
- Model improvements required.
- Proof of concept for large-scale models in StochasticPrograms.jl

Outlook on future/ongoing work

- Formulate new energy planning models in StochasticPrograms.jl
- Evaluate different aggregation schemes

- VSS linked to imbalance penalties in the intraday market
- Results are only as accurate/useful as the water valuation
- Model improvements required.
- Proof of concept for large-scale models in StochasticPrograms.jl

Outlook on future/ongoing work

- Formulate new energy planning models in StochasticPrograms.jl
- Evaluate different aggregation schemes
- Sample-based algorithms as an alternative to sequential SAA

• StochasticPrograms.jl: framework for stochastic programming

- StochasticPrograms.jl: framework for stochastic programming
- · Large-scale day-ahead problem solved on compute cluster

- StochasticPrograms.jl: framework for stochastic programming
- Large-scale day-ahead problem solved on compute cluster
- Tight confidence intervals through sequential SAA

- StochasticPrograms.jl: framework for stochastic programming
- Large-scale day-ahead problem solved on compute cluster
- Tight confidence intervals through sequential SAA
- StochasticPrograms.jl is a registered Julia package

- StochasticPrograms.jl: framework for stochastic programming
- Large-scale day-ahead problem solved on compute cluster
- Tight confidence intervals through sequential SAA
- StochasticPrograms.jl is a registered Julia package
- The full framework is open-source and freely available on Github

https://github.com/martinbiel