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> Nuclear power phase-out
e Common: trade-off between accuracy and computation time
* Aim: provide reliable decision-support in real time

> Accurate models: optimal model reductions
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Motivation

Stochastic programming for hydro power operations

e Optimal orders on the day-ahead market
* Maintenance scheduling

® Long-term investments

* Wind/solar uncertainties

In short

e Accurate decision-support under uncertainty
® Variety of parallel decomposition schemes
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Contribution

® StochasticPrograms.jl: framework for stochastic programming

Formulate, solve and analyze stochastic models

A collection of structure-exploiting algorithms
Distributed-memory implementation for large-scale models
Collection of (hydroelectric) energy planning models

Efficiently model and solve stochastic problems using expressive syntax
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Outline

® StochasticPrograms.jl showcase
Real-world application: the day-ahead problem
* Numerical experiments

Final remarks
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StochasticPrograms.jl

Flexible and expressive problem definition
Deferred model instantiation

Scenario data injection

Variety of tools for analyzing models

> VSS
> EVPI

» Confidence intervals
»

* Memory-distributed
Minimize data passing

> Lightweight sampler objects to generate scenario data

> Lightweight model recipes to generate second stage problems
Interface to structure-exploiting (distributed) solver algorithms

» L-shaped variants (LShapedSolvers.jl)
> Progressive-hedging variants (ProgressiveHedgingSolvers. j1)
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StochasticPrograms.jl - Simple model

minimize  100xy + 150x2 + E,[Q(X1, X2, &)]

X1,X2€R
st x1+x2<120
x1 > 40
X2 > 20

where

Q(x1, X2, &) = ym;gR a1(E)yr + q2(&)y2

s.t. 6y; + 10y> < 60xq
8y1 + 5y» < 80x»
0 <y <di(&)
0<y><d&)
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StochasticPrograms.jl - Simple model

simple_model = @stochastic_model begin
@stage 1 begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
@objective(model, Min, 100%*x; + 150%x,)
@constraint(model, xy + X, <= 120)
end
@stage 2 begin
@decision xy X,
@uncertain qq qp dy dp
@variable(model, 0 <= y; <= dy)
@variable(model, 0 <= y, <= dy)
@objective(model, Min, q;*y; + Qo2*ys)
@constraint(model, 6*yy; + 10%y, <= 60%x,)
@constraint(model, 8*y; + 5%y, <= 80%x,)
end
end
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JUMP syntax

end
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StochasticPrograms.jl - Simple model

simple_model = @stochastic_model begin
@stage 1 begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
@objective(model, Min, 100%*x; + 150%x,)

@constraint (model, x; + X, <= 120) minimize G1(&) y1 + G2(&) o
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StochasticPrograms.jl - Discrete distribution

sy = Scenario(q; = -24.0, q, = -28.0, d; = 500.0, d, = 100.0, probability = 0.4);
s, = Scenario(qq; = -28.0, g, = -32.0, d; = 300.0, d, = 300.0, probability = 0.6);
simple_discrete = instantiate(simple_model, [s;,s»])

Stochastic program with:
* 2 decision variables
* 2 recourse variables

* 2 scenarios of type Scenario

Solver is default solver
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StochasticPrograms.jl - Discrete distribution

print (simple_discrete)

First-stage

Min 100 x; + 150 x,
Subject to

Xq + Xp < 120

Xy = 40

Xo = 20

Second - stage

Subproblem 1 (p = 0.40):
Min -24 y; - 28 y,

Subject to

-60 x4 + 6 y; + 10 y, < O
-80 xo + 8 y; + 5y, <0
0 < vy 500

0 <y, 100

IAIA

Subproblem 2 (p = 0.60):
Min -28 y; - 32 y,
Subject to

6 y; + 10 yo, - 60 x4 < 0
8 yi + 5y, - 80 xp, <0
0 < y; < 300

0 <y, < 300
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StochasticPrograms.jl - Discrete distribution

dep = DEP(simple_discrete)
print(dep)

Min 100 x4 + 150 x, - 9.6 y;y - 11.2 yoq - 16.8 yip - 19.2 y,,
Subject to

Xy + Xp < 120

6 yi;y + 10 y,; - 60 x4 < 0

8 Viy + 5y - 80 x, <0

6 yio + 10 yoo - 60 x4 < 0

8 Vio + 5 ys5 - 80 x5 < 0

X1 > 40
X, > 20
0 < yjy < 500
0 <y, < 100
0 < ypp < 300
0 <y, < 300
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StochasticPrograms.jl - Discrete distribution

vrp = VRP(simple_discrete, solver = glpk)
-855.83

vss = VSS(simple_discrete, solver = glpk)
286.92

evpi = EVPI(simple, solver = glpk)
662.92
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StochasticPrograms.jl - Continuous distribution

@sampler SimpleSampler = begin
N::MvNormal

SimpleSampler(u, ¥) = new(MvNormal(u, X))
@sample Scenario begin
x = rand(sampler.N)
return Scenario(qy = x[1], q, = x[2], d; = x[3], d, = x[4])
end
end

2, 300, 300]

sampler = SimpleSampler(u, ¥)
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StochasticPrograms.jl - Continuous distribution

saa = SAA(simple_model, sampler, 100)

Stochastic program with:

* 2 decision variables

* 2 recourse variables

* 100 scenarios of type Scenario
Solver is default solver
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StochasticPrograms.jl - Continuous distribution

saa = SAA(simple_model, sampler, 100)

Stochastic program with:

* 2 decision variables

* 2 recourse variables

* 100 scenarios of type Scenario
Solver is default solver

confidence_interval(simple_model, sampler; solver = glpk, confidence = .95,
N = 100)
Confidence interval (p = 95%): [-2630.44 - -2389.31]
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saa = SAA(simple_model, sampler, 100)

Stochastic program with:

* 2 decision variables

* 2 recourse variables

* 100 scenarios of type Scenario
Solver is default solver

confidence_interval(simple_model, sampler;
N = 100)
Confidence interval (p = 95%): [-2630.44 -

confidence_interval (simple_model, sampler;
N = 1000)
Confidence interval (p = 95%): [-2568.90 -

solver = glpk, confidence

-2389.31]

solver = glpk, confidence

-2509.78]

StochasticPrograms.jl - Continuous distribution

0.95,

0.95,

Martin Biel (KTH)



Day-ahead problem - Electricity market
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Day-
Ahead
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Day-ahead problem - Electricity market

Day-
Ahead

Demand
Supply

Market closes
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Day-ahead problem - Electricity market

Balance responsible

Actor 1 » Actor 1
... Pm,Eq
TN\E1
Day-
Ahead |
P > Supply pemané
Pu,E> " o
Actor 2 . » Actor 2
Balance responsible
Market closes Next day
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Day-ahead problem - Electricity market

Balance responsible

Actor 1 » Actor 1
.. PmsEq
NG P/E
Day-
£ — Intrada
Ahead | ; v
P > Supply H pemané o E
Py,Eo
Actor 2 . » Actor 2
Balance responsible
Market closes Next day
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Day-ahead problem - Electricity market

Order Types

¢ Single Hourly Order

> Price independent
> Price Dependent

® Block Order

> Regular
> Linked

e Exclusive Group
* Flexible Order
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59.25

47.40

35.55

Price [EUR/MWh]

23.70

11.85

Day-ahead problem - Single order

Order Curve

e Price Independent Order
e Price Dependent Order

121.73

243.47 486.93 608.66 730.40

365.20
Order Volume [MWh/h]

Figure: Single hourly order.
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Day-ahead problem - Single order

Order Curve
Price Independent Order
Price Dependent Order
¢ Trading Outcome
59.25
47.40
<
33555
s .
4 &
o
82370
<
11.85
0.00 °
0.00 12173 24347 486.93 608.66 730.40

365.20
Order Volume [MWh/h]

Figure: Interpolated energy volume for a given market price.
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Day-ahead problem - Block order

Block Order

Hour

Figure: Block order between 15:00-20:00.
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Price [EUR/MWh]

18.21

15.33

12.46.

©
o
@

Day-ahead problem - Block order

Block Order

Bl Rejected Order
Market price

Martin Biel (KTH)

15 20
Hour

Figure: Rejected after market price settlement.




Day-ahead problem - Block order

Block Order
Bl Accepted Order
65.88 . Market price
62.28 .

58.69

55.10 AN 14.93 [EURMWH]  500.00 [MWhn]

—
51.50.

47.91

Price [EUR/MWh]

4431
40.72
37.13 L N

33.53

15 20
Hour

Figure: Accepted after market price settlement.
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Day-ahead problem - Setting

Price taking hydropower producer trading in the NordPool market
All power stations in the Swedish river Skelleftedlven
First stage: hourly electricity volume bids for the upcoming day

> Single hourly orders
> Block orders

e Second stage: optimize day-ahead production

> Bid dispatch after market price realization

> |Imbalances penalized in intraday market

» Water flow conversation (including water travel time)

> Maximize profits in the market and the future value of water
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Day-ahead problem - Setting

Price taking hydropower producer trading in the NordPool market
All power stations in the Swedish river Skelleftedlven
First stage: hourly electricity volume bids for the upcoming day

> Single hourly orders
> Block orders

Second stage: optimize day-ahead production

> Bid dispatch after market price realization

> |Imbalances penalized in intraday market

» Water flow conversation (including water travel time)

> Maximize profits in the market and the future value of water

Full model defined in HydroModels. j1
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Day-ahead problem - Data

Deterministic

® Physical parameters for power plants in Skelleftealven
® Trade regulations from NordPool

Uncertain

e Day-ahead prices from NordPool
* Mean water flows in Skelleftedlven from SMHI
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Day-ahead problem - Data

ou P J~ \<_““"
\\\
- N I )
e % SCHEMATISK BILD
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SKELLEFTEALVEN
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EUR/MWh

Al heurs are in CET/CEST. Last update: Today 12:42 CET/CEST.

2907200 s¥s se1 se2 sE3 s " oK1 k2 Kisand  Bergen  Molde  Trheim  Tromso 3 w u AT 3
00-01 3686 3695 3596 369 3656 36.96 3577 3695 36,96 3690 3695 36,96 3577
o1-02 3578 3518 3518 3518 E 3518 36,05 3518 3518 358 3518 3518 3405
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05-06 3641 s6.41 36,41 35,61 3641 s6.41 3543 3641 3641 35,61 36,41 3641 35,41 3485
06-07 393 2977 3977 3977 3877 32 4075 3977 3977 3977 3977 5532 5532 3960
07-08 4108 4055 4085 40,58 5188 678 195 085 4085 40,35 058 6673 6578 3990
08-08 4160 4082 4082 4031 5740 7417 5740 082 4082 4032 40,82 7417 7817 4532
09-10 4189 a2 a2 518 7189 EB az az a wn 7738 7730 4708
0.1 sz01 Ere 108 4168 48.8s 077 4880 4143 w163 4168 B B 733 733 4493
n-w sz ass ZE 4150 20 7685 4829 4158 w156 4156 180 4156 7734 7730 4387
2o e208 45 w148 4146 w738 7326 735 146 pr 4140 s146 146 7891 739 4275
o a6 a3 @31 37 72 6403 4572 408 403 E 4137 .37 8007 8007 3883
e aar w2 a2 a2 4520 a8 45,30 4003 4003 az wn w2 7143 77,43 3332
516 088 4100 4100 41,00 4518 o161 4513 3967 3967 41,00 4100 2100 76.23 76,28 3402
6.7  tc8s 4085 4085 4035 4485 0000 4695 016 010 4035 4085 4085 0000 50,00 ar78
T ane “092 092 452 56,05 421 2092 4092 4092 092 082 56.05 56,05 w52 a2
wo1e o as 4105 41,05 4550 6009 4950 4108 4105 41,08 108 4108 6003 50,09 4950 4805
19-20 4127 4081 4081 6074 €007 0074 081 4081 40581 4081 081 6074 o074 58,22 5299
20-21 085 4069 4069 4088 56,07 s5.36 6050 4088 4069 4063 40,89 4008 4089 5607 5507 5780 217
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223 a8 4008 403 40,08 302 w302 4038 4008 4008 4008 40,08 40,08 4008 4302 4302 a3 4033
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Figure: Historical day-ahead prices 2013-2018 from NordPool.
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Day-ahead problem - Data

Figure: Mean water flow in Skellefteélven 1999-2018 from SMHI.
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Day-ahead problem - Forecasts

* Recurrent neural networks (GRU)
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Day-ahead problem - Forecasts

* Recurrent neural networks (GRU)

Trained on price data and mean flow data separately

Early stopping to prevent overfitting

Seasonality modeled through separate inputs to the network
Driven by Gaussian noise
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Day-ahead problem - Forecasts

2017
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Figure: Price forecasts (black) and raw data (colored).
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Day-ahead problem - Forecasts
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Figure: 1000 sampled price curves using RNN.
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Day-ahead problem - Forecasts
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Figure: Price forecasts throughout a year.
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Day-ahead problem - Forecasts
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Figure: Mean flow forecasts (black) and raw data (colored).
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Day-ahead problem - Sampler

@scenario DayAheadScenario = begin
p::PriceCurve{Float64}
@:Vector{Float64}

end

@sampler RecurrentDayAheadSampler = begin
date: :Date
price_forecaster: :Forecaster{:price}
flow_forecaster: :Forecaster{:flow}

@sample DayAheadScenario begin
prices = forecast(sampler.price_forecaster, month(sampler.date))
flows = forecast(sampler.flow_forecaster, week(sampler.date))
return DayAheadScenario(PriceCurve(prices), flows[1])
end
end

Martin Biel (KTH)



Day-ahead problem - Bidlevels

! i Expected price
60 . Bidlevels
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H
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Figure: Available price points for bidding.
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Day-ahead problem - Value of water

* Marginal value of water has large impact on optimal dispatch
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Day-ahead problem - Value of water

Marginal value of water has large impact on optimal dispatch

Sometimes optimal to accept imbalance penalty and save water

Naive approach: production from excess water solved at mean price
Leads to crude order strategies
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Day-ahead problem - Value of water

® Solve a dummy stochastic program:
> First stage: water content in reservoirs
» Second stage: optimize production over the coming week
> Future prices and water inflows are uncertain
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Day-ahead problem - Value of water

® Solve a dummy stochastic program:

> First stage: water content in reservoirs
» Second stage: optimize production over the coming week
> Future prices and water inflows are uncertain

® |-shaped generates a polyhedral objective approximation
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Day-ahead problem - Value of water

e Solve a dummy stochastic program:
> First stage: water content in reservoirs
» Second stage: optimize production over the coming week
» Future prices and water inflows are uncertain
® |-shaped generates a polyhedral objective approximation
* Approximation used to model the expected future value of water

Figure: Polyhedral approximation.
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Day-ahead problem - Model

@stage 1 begin

@parameters begin

horizon = horizon

indices = indices

data = data
end
@unpack hours, plants, bids, blockbids, blocks = indices
@unpack hydrodata, regulations = data
# Variables
#
@variable(model, xt_i[t = hours] >= 0)
@variable(model, xt_d[i = bids, t = hours] >= 0)
@variable(model, xb[i = blockbids, b = blocks] >= 0)

end
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Day-ahead problem - Model

@stage 2 begin

@uncertain p, V from ¢&::DayAheadScenario
@decision xt_i xt_d xb

@variable(model, yt[t = hours] >= 0) # Hourly dispatch

@variable(model, yb[b = blocks] >= 0) # Block dispatch

@variable(model, z_up[t = hours] >= 0) # Power bought from intraday
@variable(model, z_do[t = hours] >= ®) # Power sold to intraday
@variable(model, ® <= Q[p = plants, t = hours] <= Q # Water discharge
@variable(model, S[p = plants, t = hours] >= @) # Spillage
@variable(model, Qf[p = plants, t = hours] >= 0) # Incoming discharge
@variable(model, Sf[p = plants, t = hours] >= 0) # Incoming spillage
@variable(model, ® <= M[p = plants, t = hours] <= M # Reservoir content
@variable(model, H[t = hours] >= 0) # Power production

@objective(model, Max, net_profit + value_of_stored_water)
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Day-ahead problem - Model

# Bid-dispatch links
@constraint (model, hourlybids[t = hours],
yt[t] == interpolate(p[t], bidlevels, xt_d[t]) + xt_i[t]
)
@constraint (model, bidblocks[b = blocks],
yb[b] == sum(xb[j,b] for j = accepted_blocks(b))
)
# Hydrological balance
@constraint (model, hydro_constraints[p = plants, t = hours],
# Previous reservoir content
Mlp,t] == (t > 1 ? M[p,t-1] : My[pD)
# Inflow
+ sum(Qf[i,t]+Sf[i,t] for i = upstream_plants[p])
# Local inflow
+ V[p]
# Outflow
- (Q[p,t] + S[p,tD)
)
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Day-ahead problem - Model

# Production
@constraint (model, production[t = hours],
H[t] == sum(hydrodata[p].ul[s]I*Q[p,s,t]
for p = plants, s = segments)
)
# Load balance
@constraint (model, loadbalance[t = hours],
yt[t] + sum(yb[b] for b = blocks[t]) - H[t] == z_up[t] - z_do[t]
)

# Water travel time

# Water value
@constraint (model, water_value_approximation[c = l:ncuts(water_value)],
sum(water_value[c][p]*M[p,nhours(horizon)]
for p in plants)
+ sum(W[i]
for i in cut_indices(water_value[c]))
>= cut_lb(water_value[c]))
end
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® VSS typically low in day-ahead problems
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Day-ahead problem - Algorithm

® VSS typically low in day-ahead problems

* Generate tight confidence intervals trough sequential SAA algorithm
* Ensure statistically significant VSS

SAA instances of ~2000 scenarios required to reach this bound

» ~5 million variables
» ~3.3 million constraints
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Day-ahead problem - Algorithm

Sequential SAA
® Lower bound: solve M SAA models of size N
e Upper bound: decision evaluation on T SAA models of size N > N
* Increase N iteratively until confidence interval is tight enough
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Day-ahead problem - Algorithm

Sequential SAA

® Lower bound: solve M SAA models of size N 5
® Upper bound: decision evaluation on T SAA models of size N> N
* Increase N iteratively until confidence interval is tight enough

Distributed L-shaped

® Regularization

» Trust-regions
> Level-sets
> ...

* Aggregation
> Static
> Dynamic

» Clustering
> ...

Martin Biel (KTH) July 30, 2019



Results - Benchmarks

= Distributed L-shaped with trust-region
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Figure: Distributed L-shaped performance.
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Results - Benchmarks

[— Distributed bundled L-shaped with trust-regionl
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Figure: Distributed L-shaped performance using aggregation.
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Results - Day-ahead
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Figure: Day-ahead profits.
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Results - Day-ahead
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Results - Day-ahead
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Figure: Day-ahead value of stochastic solution.
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Results - Day-ahead

Day-ahead
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Figure: Day-ahead value of stochastic solution.
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Results - Order strategies

Single Orders
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Figure: Day-ahead order strategy.
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Results - Order strategies

Single Orders
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Figure: Day-ahead single hourly order strategy.
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Results - Order strategies
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Figure: Result of single order strategy after realized market price.




Results - Order strategies
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Figure: Result of complete order strategy after realized market price.




Results - Order strategies

Single Orders
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Figure: Deterministic order strategy.
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Final Remarks

Discussion

¢ VSS linked to imbalance penalties in the intraday market

® Results are only as accurate/useful as the water valuation

® Model improvements required.

* Proof of concept for large-scale models in StochasticPrograms. jl

Outlook on future/ongoing work

¢ Formulate new energy planning models in StochasticPrograms. j1
e Evaluate different aggregation schemes
e Sample-based algorithms as an alternative to sequential SAA
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Final Remarks

Summary

® StochasticPrograms. jl: framework for stochastic programming
® Large-scale day-ahead problem solved on compute cluster
Tight confidence intervals through sequential SAA

® StochasticPrograms.jl is a registered Julia package

The full framework is open-source and freely available on Github

https://github.com/martinbiel
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