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Motivation

• Simulation of hydro power operations for decision-support

I Future electricity prices unknown
I Irregular power production: solar and wind
I Nuclear power phase-out

• Common: trade-off between accuracy and computation time
• Aim: provide reliable decision-support in real time

I Accurate models: optimal model reductions
I Fast computations: scalable algorithms on commodity hardware

Figure: Manageable models. Figure: Scalable algorithms.
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Motivation

Stochastic programming for hydro power operations

• Optimal orders on the day-ahead market
• Maintenance scheduling
• Long-term investments
• Wind/solar uncertainties
• . . .

In short

• Accurate decision-support under uncertainty
• Variety of parallel decomposition schemes
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Contribution

• StochasticPrograms.jl: framework for stochastic programming

• Formulate, solve and analyze stochastic models
• A collection of structure-exploiting algorithms
• Distributed-memory implementation for large-scale models
• Collection of (hydroelectric) energy planning models

Efficiently model and solve stochastic problems using expressive syntax
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Outline

• StochasticPrograms.jl showcase
• Real-world application: the day-ahead problem
• Numerical experiments
• Final remarks
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StochasticPrograms.jl

• Flexible and expressive problem definition
• Deferred model instantiation
• Scenario data injection
• Variety of tools for analyzing models

I VSS
I EVPI
I Confidence intervals
I . . .

• Memory-distributed
• Minimize data passing

I Lightweight sampler objects to generate scenario data
I Lightweight model recipes to generate second stage problems

• Interface to structure-exploiting (distributed) solver algorithms
I L-shaped variants (LShapedSolvers.jl)
I Progressive-hedging variants (ProgressiveHedgingSolvers.jl)
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StochasticPrograms.jl - Simple model

minimize
x1,x2∈R

100x1 + 150x2 + Eω[Q(x1, x2, ξ)]

s.t. x1 + x2 ≤ 120
x1 ≥ 40
x2 ≥ 20

where
Q(x1, x2, ξ) = min

y1,y2∈R
q1(ξ)y1 + q2(ξ)y2

s.t. 6y1 + 10y2 ≤ 60x1

8y1 + 5y2 ≤ 80x2

0 ≤ y1 ≤ d1(ξ)

0 ≤ y2 ≤ d2(ξ)
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StochasticPrograms.jl - Simple model

� �
simple_model = @stochastic_model begin

@stage 1 begin
@variable(model, x1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, x1 + x2 <= 120)

end
@stage 2 begin

@decision x1 x2

@uncertain q1 q2 d1 d2

@variable(model, 0 <= y1 <= d1)
@variable(model, 0 <= y2 <= d2)
@objective(model, Min, q1*y1 + q2*y2)
@constraint(model, 6*y1 + 10*y2 <= 60*x1)
@constraint(model, 8*y1 + 5*y2 <= 80*x2)

end
end� �
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JuMP syntax
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StochasticPrograms.jl - Discrete distribution

� �
s1 = Scenario(q1 = -24.0, q2 = -28.0, d1 = 500.0, d2 = 100.0, probability = 0.4);
s2 = Scenario(q1 = -28.0, q2 = -32.0, d1 = 300.0, d2 = 300.0, probability = 0.6);
simple_discrete = instantiate(simple_model, [s1,s2])

Stochastic program with:
* 2 decision variables
* 2 recourse variables
* 2 scenarios of type Scenario
Solver is default solver� �
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StochasticPrograms.jl - Discrete distribution� �
p r i n t ( s i m p l e _ d i s c r e t e )

F i r s t - s t a g e
==============
Min 100 x 1 + 150 x 2
S u b j e c t t o

x 1 + x 2 ≤ 120
x 1 ≥ 40
x 2 ≥ 20

Second - s t a g e
==============
S u b p r o b l e m 1 ( p = 0 .4 0 ) :
Min - 24 y 1 - 28 y 2
S u b j e c t t o

- 60 x 1 + 6 y 1 + 10 y 2 ≤ 0
- 80 x 2 + 8 y 1 + 5 y 2 ≤ 0
0 ≤ y 1 ≤ 500
0 ≤ y 2 ≤ 100

S u b p r o b l e m 2 ( p = 0 .6 0 ) :
Min - 28 y 1 - 32 y 2
S u b j e c t t o

6 y 1 + 10 y 2 - 60 x 1 ≤ 0
8 y 1 + 5 y 2 - 80 x 2 ≤ 0
0 ≤ y 1 ≤ 300
0 ≤ y 2 ≤ 300� �
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StochasticPrograms.jl - Discrete distribution

� �
dep = DEP(simple_discrete)
print(dep)

Min 100 x1 + 150 x2 - 9.6 y11 - 11.2 y2 1 - 16.8 y12 - 19.2 y2 2

Subject to
x1 + x2 ≤ 120
6 y11 + 10 y2 1 - 60 x1 ≤ 0
8 y11 + 5 y2 1 - 80 x2 ≤ 0
6 y12 + 10 y2 2 - 60 x1 ≤ 0
8 y12 + 5 y2 2 - 80 x2 ≤ 0
x1 ≥ 40
x2 ≥ 20
0 ≤ y11 ≤ 500
0 ≤ y2 1 ≤ 100
0 ≤ y12 ≤ 300
0 ≤ y2 2 ≤ 300� �
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StochasticPrograms.jl - Discrete distribution

� �
vrp = VRP(simple_discrete, solver = glpk)
-855.83

vss = VSS(simple_discrete, solver = glpk)
286.92

evpi = EVPI(simple, solver = glpk)
662.92� �
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StochasticPrograms.jl - Continuous distribution

� �
@sampler SimpleSampler = begin

N::MvNormal

SimpleSampler(µ, Σ) = new(MvNormal(µ, Σ))

@sample Scenario begin
x = rand(sampler.N)
return Scenario(q1 = x[1], q2 = x[2], d1 = x[3], d2 = x[4])

end
end

µ = [-28, -32, 300, 300]
Σ = [2 0.5 0 0

0.5 1 0 0
0 0 50 20
0 0 20 30]

sampler = SimpleSampler(µ, Σ)� �
Martin Biel (KTH) July 30, 2019 9/31



StochasticPrograms.jl - Continuous distribution

� �
saa = SAA(simple_model, sampler, 100)

Stochastic program with:
* 2 decision variables
* 2 recourse variables
* 100 scenarios of type Scenario
Solver is default solver� �

� �
confidence_interval(simple_model, sampler; solver = glpk, confidence = 0.95,

N = 100)
Confidence interval (p = 95%): [-2630.44 � -2389.31]� �� �
confidence_interval(simple_model, sampler; solver = glpk, confidence = 0.95,

N = 1000)
Confidence interval (p = 95%): [-2568.90 � -2509.78]� �
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Day-ahead problem - Electricity market

Day-
Ahead
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Balance responsible

PM,E2

Next day

Intraday

P E

P E

Martin Biel (KTH) July 30, 2019 8/31



Day-ahead problem - Electricity market

Day-
Ahead

Actor 1

P1 E1

Actor 2

P2 E2

Market closes

Actor 1

Actor 2

Balance responsible

PM,E1

Balance responsible

PM,E2

Next day

Intraday

P E

P E

Martin Biel (KTH) July 30, 2019 8/31



Day-ahead problem - Electricity market

Day-
Ahead

Actor 1

P1 E1

Actor 2

P2 E2

Market closes

Actor 1

Actor 2

Balance responsible

PM,E1

Balance responsible

PM,E2

Next day

Intraday

P E

P E

Martin Biel (KTH) July 30, 2019 8/31



Day-ahead problem - Electricity market

Day-
Ahead

Actor 1

P1 E1

Actor 2

P2 E2

Market closes

Actor 1

Actor 2

Balance responsible

PM,E1

Balance responsible

PM,E2

Next day

Intraday

P E

P E

Martin Biel (KTH) July 30, 2019 8/31



Day-ahead problem - Electricity market

Order Types

• Single Hourly Order
I Price independent
I Price Dependent

• Block Order
I Regular
I Linked

• Exclusive Group
• Flexible Order

Martin Biel (KTH) July 30, 2019 9/31



Day-ahead problem - Electricity market

Order Types

• Single Hourly Order
I Price independent
I Price Dependent

• Block Order
I Regular
I Linked

• Exclusive Group
• Flexible Order

Martin Biel (KTH) July 30, 2019 9/31



Day-ahead problem - Single order
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Figure: Single hourly order.
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Figure: Interpolated energy volume for a given market price.
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Day-ahead problem - Block order

15 20
Hour

Block Order

14.93 [EUR/MWh] 500.00 [MWh/h]

Figure: Block order between 15:00-20:00.
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Day-ahead problem - Block order
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Figure: Rejected after market price settlement.
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Day-ahead problem - Block order
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Figure: Accepted after market price settlement.
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Day-ahead problem - Setting

• Price taking hydropower producer trading in the NordPool market

• All power stations in the Swedish river Skellefteälven
• First stage: hourly electricity volume bids for the upcoming day

I Single hourly orders
I Block orders

• Second stage: optimize day-ahead production
I Bid dispatch after market price realization
I Imbalances penalized in intraday market
I Water flow conversation (including water travel time)
I Maximize profits in the market and the future value of water

• Full model defined in HydroModels.jl
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Day-ahead problem - Data

Deterministic

• Physical parameters for power plants in Skellefteälven
• Trade regulations from NordPool

Uncertain

• Day-ahead prices from NordPool
• Mean water flows in Skellefteälven from SMHI
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Day-ahead problem - Data

Figure: Schematic of the power stations in Skellefteälven.
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Day-ahead problem - Data

Figure: Historical day-ahead prices 2013-2018 from NordPool.
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Day-ahead problem - Data

Figure: Mean water flow in Skellefteälven 1999-2018 from SMHI.
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Day-ahead problem - Forecasts

• Recurrent neural networks (GRU)

• Trained on price data and mean flow data separately
• Early stopping to prevent overfitting
• Seasonality modeled through separate inputs to the network
• Driven by Gaussian noise
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Day-ahead problem - Forecasts
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Figure: Price forecasts (black) and raw data (colored).
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Day-ahead problem - Forecasts
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Figure: 1000 sampled price curves using RNN.
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Day-ahead problem - Forecasts
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Figure: Price forecasts throughout a year.
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Day-ahead problem - Forecasts
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Figure: Mean flow forecasts (black) and raw data (colored).
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Day-ahead problem - Sampler

� �
@scenario DayAheadScenario = begin

ρ::PriceCurve{Float64}
Q̃::Vector{Float64}

end
@sampler RecurrentDayAheadSampler = begin

date::Date
price_forecaster::Forecaster{:price}
flow_forecaster::Forecaster{:flow}

@sample DayAheadScenario begin
prices = forecast(sampler.price_forecaster, month(sampler.date))
flows = forecast(sampler.flow_forecaster, week(sampler.date))
return DayAheadScenario(PriceCurve(prices), flows[1])

end
end� �
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Day-ahead problem - Bidlevels
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Figure: Available price points for bidding.
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Day-ahead problem - Value of water

• Marginal value of water has large impact on optimal dispatch

• Sometimes optimal to accept imbalance penalty and save water
• Naive approach: production from excess water solved at mean price
• Leads to crude order strategies
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Day-ahead problem - Value of water

• Solve a dummy stochastic program:
I First stage: water content in reservoirs
I Second stage: optimize production over the coming week
I Future prices and water inflows are uncertain

• L-shaped generates a polyhedral objective approximation
• Approximation used to model the expected future value of water

Figure: Polyhedral approximation.
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Day-ahead problem - Model
� �
@stage 1 begin

@parameters begin
horizon = horizon
indices = indices
data = data

end
@unpack hours, plants, bids, blockbids, blocks = indices
@unpack hydrodata, regulations = data
# Variables
# ========================================================
@variable(model, xt_i[t = hours] >= 0)
@variable(model, xt_d[i = bids, t = hours] >= 0)
@variable(model, xb[i = blockbids, b = blocks] >= 0)
...

end� �
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Day-ahead problem - Model� �
@stage 2 begin

...
@uncertain ρ, V from ξ::DayAheadScenario
@decision xt_i xt_d xb
# -------------------------------------------------------
@variable(model, yt[t = hours] >= 0) # Hourly dispatch
@variable(model, yb[b = blocks] >= 0) # Block dispatch
@variable(model, z_up[t = hours] >= 0) # Power bought from intraday
@variable(model, z_do[t = hours] >= 0) # Power sold to intraday
@variable(model, 0 <= Q[p = plants, t = hours] <= Q̄) # Water discharge
@variable(model, S[p = plants, t = hours] >= 0) # Spillage
@variable(model, Qf[p = plants, t = hours] >= 0) # Incoming discharge
@variable(model, Sf[p = plants, t = hours] >= 0) # Incoming spillage
@variable(model, 0 <= M[p = plants, t = hours] <= M̄ # Reservoir content
@variable(model, H[t = hours] >= 0) # Power production
...
@objective(model, Max, net_profit + value_of_stored_water)
...� �
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Day-ahead problem - Model� �
...
# Bid-dispatch links
@constraint(model, hourlybids[t = hours],

yt[t] == interpolate(ρ[t], bidlevels, xt_d[t]) + xt_i[t]
)

@constraint(model, bidblocks[b = blocks],
yb[b] == sum(xb[j,b] for j = accepted_blocks(b))

)
# Hydrological balance
@constraint(model, hydro_constraints[p = plants, t = hours],

# Previous reservoir content
M[p,t] == (t > 1 ? M[p,t-1] : M0[p])
# Inflow
+ sum(Qf[i,t]+Sf[i,t] for i = upstream_plants[p])
# Local inflow
+ V[p]
# Outflow
- (Q[p,t] + S[p,t])
)

...� �
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Day-ahead problem - Model� �
...
# Production
@constraint(model, production[t = hours],

H[t] == sum(hydrodata[p].µ[s]*Q[p,s,t]
for p = plants, s = segments)

)
# Load balance
@constraint(model, loadbalance[t = hours],

yt[t] + sum(yb[b] for b = blocks[t]) - H[t] == z_up[t] - z_do[t]
)

...
# Water travel time
...
# Water value
@constraint(model, water_value_approximation[c = 1:ncuts(water_value)],

sum(water_value[c][p]*M[p,nhours(horizon)]
for p in plants)

+ sum(W[i]
for i in cut_indices(water_value[c]))

>= cut_lb(water_value[c]))
end� �
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Day-ahead problem - Algorithm

• VSS typically low in day-ahead problems

• Generate tight confidence intervals trough sequential SAA algorithm
• Ensure statistically significant VSS
• SAA instances of ~2000 scenarios required to reach this bound

I ~5 million variables
I ~3.3 million constraints
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Day-ahead problem - Algorithm

Sequential SAA
• Lower bound: solve M SAA models of size N
• Upper bound: decision evaluation on T SAA models of size Ñ > N
• Increase N iteratively until confidence interval is tight enough

Distributed L-shaped
• Regularization

I Trust-regions
I Level-sets
I . . .

• Aggregation
I Static
I Dynamic
I Clustering
I . . .
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Results - Benchmarks
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Figure: Distributed L-shaped performance.
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Figure: Distributed L-shaped performance using aggregation.
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Results - Day-ahead
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Figure: Day-ahead profits.
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Results - Day-ahead
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Figure: Day-ahead value of stochastic solution.
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Results - Order strategies
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Figure: Day-ahead order strategy.

Martin Biel (KTH) July 30, 2019 28/31



Results - Order strategies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

0.00

13.22

26.44

39.66

52.88

66.10

79.32

Pr
ice

 [E
UR

/M
W

h]

Single Orders

671.1 642.3 622.2 675.6 692.9

696.6

1.1e+03

721.3

736.8

1.1e+03

742.8

1.1e+03

401.1

0.0

398.8

507.3

708.6

520.5

0.0

364.7

797.8

817.0

891.3

867.8 865.6

440.7

0.0

175.4

45.14

0.0

12.56

17.61

58.80

174.6

508.5

611.3

485.9

611.3

982.1

1.1e+03

1.0e+03

1.0e+03

1.0e+03

1.0e+03 1.0e+03

Independent Volum
e [M

W
h]

Dependent Volum
es [M

wh]

Figure: Day-ahead single hourly order strategy.
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Results - Order strategies
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Figure: Result of complete order strategy after realized market price.
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Results - Order strategies
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Figure: Deterministic order strategy.
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Final Remarks

Discussion

• VSS linked to imbalance penalties in the intraday market

• Results are only as accurate/useful as the water valuation
• Model improvements required.
• Proof of concept for large-scale models in StochasticPrograms.jl

Outlook on future/ongoing work

• Formulate new energy planning models in StochasticPrograms.jl

• Evaluate different aggregation schemes
• Sample-based algorithms as an alternative to sequential SAA
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Final Remarks

Summary

• StochasticPrograms.jl: framework for stochastic programming

• Large-scale day-ahead problem solved on compute cluster
• Tight confidence intervals through sequential SAA
• StochasticPrograms.jl is a registered Julia package
• The full framework is open-source and freely available on Github

https://github.com/martinbiel
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