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® Hydroelectric power production
® Spatial dependence
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® Alusbyn

e Store energy in water reservoirs
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Motivation - Optimization models

® Decision support: formulate and solve optimization models

e Common: trade-off between accuracy and computation time

e Aim: provide reliable decision-support in a short amount of time

» Accurate models: optimal model reductions
> Fast computations: scalable algorithms on commodity hardware
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Figure: Manageable models
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Figure: Scalable algorithms
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Motivation - Stochastic programming

Mathematical framework for decision problems subjected to uncertainty

Decision —— OQObservation —— Recourse

Actions
® |nvestments
® Schedules

® Orders

Uncertainties
® Demand
® \Weather conditions

® Market price

Actions
® Restock
® Reschedule

® Settle imbalances
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Motivation - Stochastic programming

Stochastic programming for hydropower operations

e Order strategies in deregulated electricity markets

e Capacity expansion

Coordination with renewable production

® Maintenance scheduling

Seasonal planning: reservoir contents before spring flood
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Contribution

® StochasticPrograms.jl: framework for stochastic programming

Distributed stochastic programming for large-scale models

Efficient implementations of structure-exploiting algorithms

Algorithmic innovations and software patterns

Detailed consideration of a hydropower problem
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Preliminaries - Stochastic program

Definition (Linear two-stage stochastic program)
A linear two-stage stochastic program is given by

mi)?ei%j,jze cTx + Ee[Q(x, £(w))]

subject to Ax=0b
x > 0,

where _ —
Q(x, &(w)) =min .y
st. Tux+ Wy =h,
y > 0.

The optimal value is called the value of the recourse problem (VRP).
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Preliminaries - Stochastic performance

Definition (Expected value decision)
Given B
€ = Ee[{(w)]

the expected value decision x associated with a given stochastic
program is given by the solution to

minimize ¢’ x + Q(x, )
xER"N

st. Ax=0b

This problem is known as the expected value problem.
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Preliminaries - Stochastic performance

Definition

The expected result of the expected value decision, or the EEV, is
given by

EEV = ¢T3 4+ E¢[Q(%, £(w))]-
Definition

The value of the stochastic solution, or the VSS, is given by

VSS = VRP — EEV.
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e () finite

e ¢ discrete random variable

n
L T T
minimize ¢ X + s
XER",}’SER"’ SZ_;. qu yS
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Preliminaries - Finite extensive form

e Q) finite
e ¢ discrete random variable
T b T
Joiimize, € 2, ™Ay
subjectto Ax=0b
Tsx + Wys = hq, s=1,...,n
x>0,y >0, s=1,...,n

Also commonly referred to as the deterministic equivalent problem, or the
DEP.
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Preliminaries - Sample average approximation

e Q infinite
® ¢ continuous random variable
® Sample n scenarios ws, s =1,...,n independently from Q

1 n
L T T
minimize c¢'x+ —
xER",ys€R™ + n ; s ¥s
subjectto Ax=b
Tsx + Wys = hg, s=1,...,n

x>0, ys >0, s=1,...,n

e Asymptotic convergence as n goes to infinity
e Confidence intervals around optimal solution
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Preliminaries - Solution algorithms

All methods boil down to solving the finite extensive form

n
L T T
minimize ¢ x + i
xER", y,€R™ sgl ss Js
subjectto Ax=b
Tsx + Wys = hq, s=1,...,n

x>0, ys >0, s=1,...,n

® Direct solution
® The L-shaped algorithm
® Progressive hedging

Martin Biel (KTH) Licentiate thesis, November 29, 2019



Preliminaries

Preliminaries - Solution algorithms

(0w )
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Master problem Subproblems
L k T
minimize Qs = ds s
subject to  Wys = hg — Tsxk

minimize ¢’ x+ 6 ys >0
x€eRn
subjectto Ax=b
anX +6> Ak, Vk

x>0

Optimality cuts
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Master problem

minimize ¢'x + 6+ ||x — X||
x€R"

subjectto Ax=0b
OQkx + 6 > g,
x>0

Vk

Preliminaries - The L-shaped algorithm

Subproblems

L k T
minimize =
vs€RM Qs qs yS
subject to  Wys = hg — Tsxk

YSZO

Optimality cuts

an = ZFSAZ Ts: Ak = Zﬂ's)\sThs
s=1 s=1
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Master problem

n
L T
minimize c¢'x+ 0
xeRn 52—21 s

subject to Ax=0b
0Q1kx + 01 > gk,

8Qn,kx +0, > Qn,k;
x>0

Vk

Preliminaries - The L-shaped algorithm

Subproblems
L k T
minipize Qf = a7y,
subject to  Wys = hg — Tsxk
Ys = 0

Optimality cuts

8Qs,k = Ws)\;r T57 ds k = pis)\sThs
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Motivation

® Industry-scale applications typically involve 10,000+ scenarios

Example: 24-hour unit commitment problem [Petra et al (2014))

» 16,384 scenarios
» 1.95 billion variables and constraints in the extended form
» ~ 1 hour computation time on a Titan supercomputer

® |ong computation time required to optimize

® Memory requirement exceeds the capacity of a single machine

Parallel algorithms that work on distributed data are required

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Distributed stochastic programming

Contribution

StochasticPrograms. j1: framework for stochastic programming
Formulate, solve and analyze stochastic models
Distributed-memory implementation for large-scale models
Efficient implementations of structure-exploiting algorithms

Publications

® Martin Biel and Mikael Johansson. Efficient stochastic programming in Julia.
arXiv preprint arXiv:1909.10451, 2019.
Submitted for consideration to Mathematical Programming Computation. Under review,

® Martin Biel and Mikael Johansson. Distributed L-shaped algorithms in Julia.
In 2018 IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-ATM).
IEEE, 2018.
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StochasticPrograms.jl

Flexible and expressive problem definition
Deferred model instantiation
Scenario data injection
Variety of tools for model analysis
> VSS
> EVPI

» Confidence intervals
> ..

Memory-distributed
Minimize data passing
» Lightweight sampler objects to generate scenario data
» Lightweight model recipes to generate second stage problems

® Interface to structure-exploiting (distributed) solver algorithms

» L-shaped variants (LShapedSolvers.jl)
> Progressive-hedging variants (ProgressiveHedgingSolvers.jl1)

Martin Biel (KTH) Licentiate thesis, November 29, 2019



Distributed stochastic programming

StochasticPrograms.jl - Simple model

minimize  100x; 4 150x2 + E¢[Q(x1, x2, §)]

x1,%0€R
subject to  x3 + x» < 120
x1 > 40
xp > 20

where

Q(x1,x2,&) = min  q1(§)yr + q2(&)y2
y1,y2€R

subject to  6y; + 10y» < 60x3
8y1 + by> < 80xo
0 <y < di(€)
0 <y < da(€)
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StochasticPrograms.jl - Simple model

simple_model = @stochastic_model begin
@stage 1 begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
Q@objective(model, Min, 100%x; + 150%x,)
@constraint (model, x; + x, <= 120)
end
@stage 2 begin
Q@decision x; X
Quncertain q; q, d; d»
Q@variable(model, 0 <= y; <= d;)
Qvariable(model, 0 <= y, <= d,)
Qobjective(model, Min, qi*y; + Q2*y2)
Qconstraint (model, 6%xy; + 10%y, <= 60%x;)
Qconstraint (model, 8*y; + bxy, <= 80%x,)
end
end

Day-ahead

Conclusion
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StochasticPrograms.jl - Simple model

simple_model = @stochastic_model begin
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Distributed stochastic programming

StochasticPrograms.jl - Simple model

simple_model = @stochastic_model begin
@stage 1 begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
Qobjective(model, Min, 100%x; + 150%x,)
@constraint (model, x; + x, <= 120)

end o
e 100 150
@stage 2 begin nz?ggﬁ X1 + X0

@deusml} X1 X2 subject to  x3 + xp < 120
Quncertain q; q, d; d»
@variable(model, 0 <= y; <= d;) x1 > 40
Qvariable(model, 0 <= y, <= d,) x2 > 20
Qobjective(model, Min, qi*y; + Q2*y2)
Qconstraint (model, 6%xy; + 10%y, <= 60%x;)
Qconstraint (model, 8*y; + bxy, <= 80%x,)
end
end
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Distributed stochastic programming

StochasticPrograms.jl - Simple model

simple_model = @stochastic_model begin
@stage 1 begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
Q@objective(model, Min, 100%x; + 150%x,)
@constraint (model, x; + x, <= 120)
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Qvariable(model, 0 <= y, <= d,) Sy < d(f)
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Qconstraint (model, 6%xy; + 10*y, <= 60%x;)
Qconstraint (model, 8*y; + bxy, <= 80%x,)
end
end
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@stage 1 begin
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@objective(model, Min, 100*x; + 150%x,)
@constraint (model, x; + x, <= 120) S
end minimize qu(&)y1 + 2(&)y2
O@stage 2 begin hfm
@decision x; X, subject to  6y; + 10y> < 60x1
Quncertain q; q; d; d, 8y1 + 5y» < 80x2
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Qvariable(model, 0 <= y, <= d,)
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Qconstraint (model, 8*y; + bxy, <= 80%x,)
end
end
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StochasticPrograms.jl - Simple model
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@stage 1 begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
Q@objective(model, Min, 100%x; + 150%x,)
@constraint (model, x; + x, <= 120)

end minimize  q1(&)y1 + q2(&)y2
Ostage 2 begin Ny €R
@decision x; X, subject to  6y1 + 10y» < 60x1
Quncertain q; q, d; d» 8y1 + 5y2 < 80x2
@variable(model, 0 <= <= d;)
Qvariable(model, 0 <= ijl <= d;) 0=y <di(f)
Qobjective(model, Min, qi*y; + Q2*y2) 0<y» < da(§)

Qconstraint (model, 6%xy; + 10%y, <= 60%x;)
Qconstraint (model, 8*y; + bxy, <= 80%x,)
end
end
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Distributed stochastic programming

StochasticPrograms.jl - Discrete distribution

Let £ have a discrete probability distribution, taking on the value
T
& = (500 100 —24 —28)
with probability 0.4 and
-
& = (300 300 —28 —32)

with probability 0.6.

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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StochasticPrograms.jl - Discrete distribution

&1
&2

sp = instantiate(simple_model, [&£;,&,])

Scenario(q; = -24.0, g, = -28.0, d; 500.0, d, = 100.0, probability =
Scenario(q; = -28.0, g, = -32.0, d; = 300.0, d, = 300.0, probability =

I
[
IS
N\

|
o
(2]
~

Stochastic program with:

* 2 decision variables

* 2 recourse variables

* 2 scenarios of type Scenario
Solver is default solver
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StochasticPrograms.jl - Discrete distribution
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500.0, d, = 100.0, probability =
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Distributed stochastic programming

StochasticPrograms.jl - Discrete distribution

print(sp)
First-stage

Min 100 x; + 150 x»
Subject to

x1 + xp < 120

xp > 40

xp > 20

Second-stage

Subproblem 1 (p = 0.40):
Min -24 y; - 28 y,

Subject to

-60 x; + 6 y; + 10 y, < 0
-80 xp + 8 y; +5 vy, <0
0 <y, < 500

0 <y, < 100

Subproblem 2 (p = 0.60):
Min -28 y; - 32 y,
Subject to

6 y; + 10 yp, - 60 x; < 0

8 y; +5 vy, - 80 xp <0
0 < y; < 300
0 <y, < 300

(KTH) November 29, 2019



Distributed stochastic programming

StochasticPrograms.jl - Discrete distribution

dep = DEP(sp)
print (dep)

Min 100 x; + 150 x, - 9.6 y;3 - 11.2 yo; - 16.8 yi» - 19.2 y;,»
Subject to

X1 + X, < 120

6 yiu + 10 yo1 - 60 x; <O

8 yu + 5 y21 - 80 x <0

6 yio + 10 y,, - 60 x; <O

8 yi2+ 5 y22 - 80 % <0

x; > 40
X, > 20
0 < yuiu < 500
0 < y21 < 100
0 < yip < 300
0 < y22 < 300
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Distributed stochastic programming

StochasticPrograms.jl - Discrete distribution

dep = DEP(sp)
print (dep)

Min 100 x; + 150 x, - 9.6 y;3 - 11.2 yp; - 16.8 yi» - 19.2 y,»
Subject to

x; + x, < 120

6 yu + 10 yo1 - 60 x; <O

8 yu + 5 y21 - 80 x <0

6 yio + 10 y,», - 60 x; <O

8 yi2+ 5 y22 - 80 x <0

x; > 40
X, > 20
0 < yiu < 500
0 < y21 < 100
0 < yip < 300
0 < y22 < 300
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vrp = VRP(sp, solver
-855.83

vss = VSS(sp, solver
286.92
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StochasticPrograms.jl - Discrete distribution

gurobi) # value of the recourse problem

gurobi) # value of the stochastic solution

Conclusion

Martin Biel (KTH)
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Distributed stochastic programming

StochasticPrograms.jl - Continuous distribution

Let instead £ have a multivariate normal distribution § ~ A (p, X), where

28 2 05 0 0
|- s_os 1 0 o0
F=1300]|" ““ |0 0 5 20

300 0 0 20 30

Martin Biel (KTH) Licentiate thesis, November 29, 2019



Distributed stochastic programming

StochasticPrograms.jl - Continuous distribution

O@sampler SimpleSampler = begin
N: :MvNormal

SimpleSampler (i, ¥) = new(MvNormal(u, X))
@sample Scenario begin

x = rand(sampler.N)
return Scenario(q; = x[1], q, = x[2], d; = x[3], d, = x[4])

end
end
w = [-28, -32, 300, 300]
Y=[20.500
0.5100
0 0 50 20
0 0 20 30]

sampler = SimpleSampler (u, )
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StochasticPrograms.jl - Continuous distribution

O@sampler SimpleSampler = begin
N: :MvNormal

SimpleSampler (i, ¥) = new(MvNormal(u, X))
@sample Scenario begin

x = rand(sampler.N)
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Distributed stochastic programming

StochasticPrograms.jl - Continuous distribution

O@sampler SimpleSampler = begin
N: :MvNormal

SimpleSampler(u, ¥) = new(MvNormal(u, X))
@sample Scenario begin

x = rand(sampler.N)
return Scenario(q; = x[1], q, = x[2], d; = x[3], d, = x[4])

end
end
w = [-28, -32, 300, 300]
Y =[20.500
0.56100
0 0 50 20
0 0 20 30]

sampler = SimpleSampler (u, )
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Distributed stochastic programming

StochasticPrograms.jl - Continuous distribution

O@sampler SimpleSampler = begin
N: :MvNormal

SimpleSampler (i, ¥) = new(MvNormal(u, X))
@sample Scenario begin

x = rand(sampler.N)
return Scenario(q; = x[1], q, = x[2], d; = x[3], d, = x[4])

end
end
w = [-28, -32, 300, 300]
Y=[20.500
0.5100
0 0 50 20
0 0 20 30]

sampler = SimpleSampler (u, X)
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StochasticPrograms.jl - Continuous distribution

saa = SAA(simple_model, sampler, 100)

Stochastic program with:
* 2 decision variables
* 2 recourse variables
* 100 scenarios of type Scenario
Solver is default solver
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StochasticPrograms.jl - Continuous distribution

saa = SAA(simple_model, sampler, 100)

Stochastic program with:

* 2 decision variables

* 2 recourse variables

* 100 scenarios of type Scenario
Solver is default solver

confidence_interval(simple_model, sampler; solver = glpk, confidence = 0.95,
N = 100)
Confidence interval (p = 95%): [-2630.44 - -2389.31]
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Distributed stochastic programming

StochasticPrograms.jl - Continuous distribution

saa = SAA(simple_model, sampler, 100)

Stochastic program with:

* 2 decision variables

* 2 recourse variables

* 100 scenarios of type Scenario
Solver is default solver

confidence_interval(simple_model, sampler; solver = glpk, confidence = 0.95,
N = 100)
Confidence interval (p = 95%): [-2630.44 - -2389.31]

confidence_interval(simple_model, sampler; solver = glpk, confidence = 0.95,
N = 1000)
Confidence interval (p = 95%): [-2568.90 - -2509.78]
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StochasticPrograms.jl - Solvers

optimize! (sp, solver = GurobiSolver())
optimal_value(sp)
-855.83
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StochasticPrograms.jl - Solvers

optimize! (sp, solver = GurobiSolver())
optimal_value(sp)
-855.83

optimize! (sp, solver = LShapedSolver (gurobi))
L-Shaped Gap Time: 0:00:00 (6 iterations)

Objective: -855.8333
Gap: 0.0

No. cuts: 7
Iterations: 6
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Distributed stochastic programming

StochasticPrograms.jl - Solvers

optimize! (sp, solver = GurobiSolver())
optimal_value(sp)
-855.83

optimize! (sp, solver = LShapedSolver(gurobi))
L-Shaped Gap Time: 0:00:00 (6 iterations)

Objective: -855.8333
Gap: 0.0

No. cuts: 7
Iterations: 6

optimize! (sp, solver = ProgressiveHedgingSolver (gurobi))
Progressive Hedging Time: 0:00:06 (1315 iterations)
Objective: -855.8333
4 9.570267362791345e-7
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StochasticPrograms.jl - Distributed models

using Distributed
addprocs(2)

sp = instantiate(simple_model, [£;, £21)
Distributed stochastic program with:

* 2 decision variables

* 2 recourse variables

* 2 scenarios of type Scenario
Solver is default solver
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Distributed stochastic programming

StochasticPrograms.jl - Distributed models

using Distributed
addprocs(2)

sp = instantiate(simple_model, [£;, £21)
Distributed stochastic program with:

* 2 decision variables

* 2 recourse variables

* 2 scenarios of type Scenario
Solver is default solver

optimize! (sp, solver = LShapedSolver(gurobi, distributed = true))
Distributed L-Shaped Gap (thresh = 1e-06, value = 0.0)

Objective: -8565.833
Gap: 0.0

No. cuts: 5
Iterations: 4

Martin Biel (KTH) Licentiate thesis, November 29, 2



Distributed stochastic programming

StochasticPrograms.jl - Implementation

Worker 1 Worker r

Sr: | minimize qu
y:€R™ s s

S1 0 | minimize quys ] L[] L[]
YiER™
st. Wys=hs—Ts

st. Wys=hs—Ts
ys =0

¥s >0

Master

minimize ¢’ x +
x€ERN

x>0

Figure: Distributed L-shaped procedure

Licentiate thesis, November 29, 2019
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StochasticPrograms.jl - Implementation

Worker 1 Worker r
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Distributed stochastic programming

StochasticPrograms.jl - Implementation

Worker 1 Worker r

w@og - v @ oo
St | minimize al ys e o o Sri | minimize al ys
st. Wys = hs — Tsxo st. Wys = hs — Tsxo
¥s >0 ys >0
pass Master
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C: x>0

Figure: Distributed L-shaped procedure
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Distributed stochastic programming

StochasticPrograms.jl - Implementation

Worker 1 Worker r
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e o o S yﬁ%i}e alys
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S1: | minimize g,
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T T
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Distributed stochastic programming
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StochasticPrograms.jl - Implementation
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Distributed stochastic programming

StochasticPrograms.jl - Numerical experiments

The day-ahead problem

e Optimal order strategies on a deregulated electricity market
® From the perspective of a hydropower producer
e First stage: Hourly electricity volume bids for the upcoming day

e Second stage: Optimize production when market price is known

Martin Biel (KTH) Licentiate thesis, November 29, 2019



Distributed stochastic programming

StochasticPrograms.jl - Numerical experiments

5.74 x 109 [ { {

5.73 x 10° [

5.72 x 10° [

Confidence interval CI

5.71 x 10° [

| —e— Day-ahead planning problem

5.70 x 109 v

T !
0 500 1000 1500 2000
Number of samples N

Figure: Confidence intervals around optimal value of the day-ahead problem as a
function of SAA sample size.
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Distributed stochastic programming

StochasticPrograms.jl - Numerical experiments

Strong scaling

=== Distributed L-shaped with trust-region
914 — Distributed L-shaped
=
[
E
g 66.9]
=]
.S
e
@
b=
&
5 425
O
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Figure: Median computation time required for L-shaped algorithms to solve a
day-ahead problem with 1000 scenarios, as a function of number of worker cores.
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StochasticPrograms.jl - Numerical experiments
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StochasticPrograms.jl - Numerical experiments
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StochasticPrograms.jl - Numerical experiments
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Martin Biel (KTH) Licentiate thesis, November 29, 2



Introduction  Preliminaries  Distributed stochastic programming  Cut aggregation Day-ahead  Conclusion

StochasticPrograms.jl - Numerical experiments

Cut aggregation

Martin Biel (KTH) Licentiate thesis, November 2!



Introduction  Preliminaries  Distributed stochastic programming Cut aggregation Day-ahead Conclusion

StochasticPrograms.jl - Numerical experiments

Cut aggregation

® Partition optimality cuts into uniform aggregates

Martin Biel (KTH) Licentiate thesis, November 29,



Distributed stochastic programming

StochasticPrograms.jl - Numerical experiments

Cut aggregation

® Partition optimality cuts into uniform aggregates

® 8Qa,k = Z 775)\57— Ts, dak = Z 7Ts)\;rhs
SES, SES,

Martin Biel (KTH) Licentiate thesis, November 2!



Distributed stochastic programming

StochasticPrograms.jl - Numerical experiments

Cut aggregation

® Partition optimality cuts into uniform aggregates
® 8Qa,k = Z 775)\57— Ts, dak = Z 7Ts)\;rhs

seS, seS,
® Reduce amount of passed data

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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StochasticPrograms.jl - Numerical experiments

Cut aggregation

® Partition optimality cuts into uniform aggregates

® 8Qa,k = Z 775)\57— Ts, dak = Z 7Ts)\;rhs
SES, SES,
® Reduce amount of passed data

® Master problem does not grow as fast

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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StochasticPrograms.jl - Numerical experiments
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Figure: Median computation time required for the aggregated L-shaped method to
solve a day-ahead problem with 1000 scenarios. The experiment was performed on
8 worker cores.
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® StochasticPrograms. jl: framework for stochastic programming
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Distributed stochastic programming

StochasticPrograms.jl - Summary

StochasticPrograms. jl: framework for stochastic programming

Formulate and solve memory-distributed stochastic programs

Structure-exploiting algorithms that run in parallel on distributed data

The full framework is open-source and freely available on Github

https://github.com/martinbiel

Martin Biel (KTH) Licentiate thesis, November 29, 2019


https://github.com/martinbiel

Introduction  Preliminaries  Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Outline

@O Dynamic cut aggregation in L-shaped algorithms
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Cut aggregation

Motivation

e Cut aggregation improves distributed performance

» Reduce communication latency
» Reduce load imbalance

e Uniform cut aggregation has been applied in many recent works

® Complexity analysis only covers single-cut and multi-cut L-shaped
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Cut aggregation

Contribution

® Review of the use of cut aggregation in L-shaped algorithms
¢ Novel dynamic cut aggregation procedure
[ J

Theoretical results that complement earlier works

® Performance improvements in large-scale examples

Publications

® Martin Biel and Mikael Johansson. Dynamic cut aggregation in L-shaped algorithms.
arXiv preprint arXiv:1910.13752, 2019.
Submitted for consideration to the European Journal of Operational Research. Under review

Martin Biel (KTH) Licentiate thesis, November 2!
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Cut aggregation - Worst case analysis

Definition

Let bs represent the maximum number of different slopes of Qs(x)

in any direction parallel to one of the axes. Then, b = maxs bs is the
slope number of Q(x).
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Cut aggregation

Cut aggregation - Worst case analysis

Definition

Let bs represent the maximum number of different slopes of Qs(x)
in any direction parallel to one of the axes. Then, b = maxs bs is the
slope number of Q(x).

Theorem (Birge and Louveaux, 1988)

The maximum number of iterations required to obtain an optimal
solution is, for single-cut L-shaped:

[1+n(b—1)]",
and for multi-cut L-shaped:

1+ n(b™—1).

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Static cut aggregation

Definition

A partitioning scheme
S§={81,...,8a}
of n scenarios is a set of partitions such that

S, CH{1,...,n}, a=1,...,A
SaNSp =0, Va#b

A
USa={1,...,n}.
a=1

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Static cut aggregation

Aggregated L-shaped master

A
minimize ¢’ x + Z 0,
a=1

xERN
st. Ax=0b
0Qakx + 05> qak, a=1,...,A Vk
x>0

Aggregated optimality cuts

OQak = > A Ts

SES,

Ga,k = Z 7Ts>\5Ths

SES,
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Static cut aggregation

Definition

The aggregation size of the partitioning scheme S is given by
A(S) = S].

Definition

The aggregation level of the partitioning scheme S is given by

A = .
L(S) = max ISl

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Static cut aggregation
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Static cut aggregation

Theorem

The maximum number of iterations required to obtain an optimal
solution, of an aggregated L-shaped algorithm that uses a
partitioning scheme S = {Si, ..., Sa(s)}, is given by

A(S)
1+ ) [1+[Sal(b—1)]" — A(S).
a=1

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Static cut aggregation

Corollary

The maximum number of iterations of an aggregated L-shaped
algorithm, using a partitioning scheme S = {S1,...,Sa}, is upper
bounded by

1+ AS)(1+A(S)(b—1)]" —1).
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Cut aggregation

Static cut aggregation

Corollary

The maximum number of iterations of an aggregated L-shaped
algorithm, using a partitioning scheme S = {S1,...,Sa}, is upper
bounded by

1+ AS)(1+A(S)(b—1)]" —1).

Uniform cut aggregation
AL(S) = n/A(S). Hence, worst case is given by

nM(b — 1)m

AT <Te-DT

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Dynamic cut aggregation

A dynamic partitioning scheme
D={s k}iozl

is a sequence of partitioning schemes S¥ = {S¥, ... ,Sf\k}.
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Dynamic cut aggregation

Dynamically aggregated L-shaped master

n
minimize ¢’ x + Z 0

x€ERN
s=1
st. Ax=b
S 0Qusx+ > 0> > qok, SkeD Vk
seSk seSk seSk

x > 0.
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Cut aggregation

Dynamic cut aggregation

Dynamically aggregated L-shaped master

n
minimize ¢’ x + Z 0

xeRn
s=1
st. Ax=b
S 0Qusx+ > 0> > qok, SkeD Vk
seSk seSk seSk

x > 0.

Theorem

An L-shaped algorithm that uses dynamic cut aggregation, with a
dynamic partitioning scheme D = {S*}$° | converges to an optimal
solution of a given stochastic program in a finite number of
iterations.

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Dynamic cut aggregation

Complexity

Theorem

The maximum number of iterations required to obtain an optimal
solution, of an L-shaped algorithm that uses dynamic cut
aggregation with a dynamic partitioning scheme D = {S¥}%° ,, is
given by

2+ Z <3"L>[1+aL(b—1)]m— Z {”}—AO.

aL:1 aL:1 aL

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Dynamic cut aggregation

Hybrid aggregation

Corollary

The maximum number of iterations of an L-shaped algorithm with
dynamic cut aggregation, where the dynamic partitioning scheme D
satisfies

Sk=8NV vSkeD, k>N

for some N, is given by

N+ ASM)([1+ Au(sM)(b - 1)] " 1)

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Dynamic cut aggregation - Aggregation schemes

® Dynamic aggregation

» SelectUniform

> SelectDecaying

» SelectClosest

» SelectClosest ToReference

® Cluster aggregation

» ClusterByReference
> K-medoids

® Hybrid aggregation

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Numerical experiments - SSN

Provision bandwidth in a network before the precise point-to-point demands
are known.
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Numerical experiments - SSN

Provision bandwidth in a network before the precise point-to-point demands
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Figure: Network topology in SSN problem [Sen et al (1994))

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Numerical experiments - SSN

Provision bandwidth in a network before the precise point-to-point demands
are known.

Figure: Network topology in SSN problem [Sen et al (1994))

SAA instance of n = 10000 scenarios yields a relativevly tight confidence
interval around the optimum.

Martin Biel (KTH)

Licentiate thesis, November 29, 2019
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Numerical experiments - Parameter tuning

SelectUniform
12000 -
— 11000 |-
N
< 10000 |-
)
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L L L L L
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Figure: Empirical complexity for P = SSN with n = 1000 when using the SelectUniform decision
rule.
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Numerical experiments - Parameter tuning

SelectDecaying
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Nc(A,P)

9000 |-
8000 |- —o0
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Figure: Empirical complexity for P = SSN with n = 1000 when using the SelectDecaying
decision rule.
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Numerical experiments - Parameter tuning

SelectClosest
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Figure: Empirical complexity for P = SSN with n = 1000 when using the SelectClosest decision
rule.
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Numerical experiments - Parameter tuning

SelectClosest ToReference
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Figure: Empirical complexity for P = SSN with n = 1000 when using the
SelectClosest ToReference decision rule.

Martin Biel (KTH) Licentiate thesis, November 2!



Cut aggregation

Numerical experiments - Parameter tuning

ClusterByReference
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Figure: Empirical complexity for P = SSN with n = 1000 when using the ClusterByReference
cluster rule.
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Numerical experiments - Parameter tuning

K-medoids
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Figure: Empirical complexity for P = SSN with n = 1000 when using K-medoids cluster rule.
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Numerical experiments - Small-scale SSN

SSN - Small-scale complexity

L E B Multi-cut
15000 E= Single-cut
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Figure: Empirical complexity and wall-clock time to solution for P = SSN with n = 1000
scenarios.
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Numerical experiments - Large-scale SSN

SSN - Large-scale complexity
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Figure: Empirical complexity and wall-clock time to solution for P = SSN with n = 10000
scenarios.
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experiments - Large-scale SSN

SSN - Large-scale complexity
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Figure: Empirical complexity and wall-clock time to solution for P = SSN with n = 10000
scenarios, using the hybrid fixing strategy.
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Numerical experiments - Large-scale day-ahead

Day-ahead - Large-scale complexity
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Figure: Empirical complexity and wall-clock time to solution for P = DA with n = 1000 scenarios.
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Numerical experiments - Large-scale day-ahead

Day-ahead - Large-scale complexity
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Figure: Empirical complexity and wall-clock time to solution for P = DA with
n = 1000 scenarios, using the hybrid fixing strategy.
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Cut aggregation - Final Remarks

Discussion

® Worst-case bounds are not reached
® Hard to reason about average case
® Heuristic aggregation schemes can improve performance

Summary
® Novel aggregation procedures in L-shaped algorithms

e Convergence is preserved

® Performance improvements in distributed settings

® Worst-case analysis

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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Outline

@ Optimal order strategies in a day-ahead market
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Day-ahead

Contribution

® Determine optimal order strategies in a deregulated electricity market
e Complete modeling procedure

» Data gathering

» Forecast generation
» Model formulation
» Optimization

» Result visualization

Publications

® Martin Biel. Optimal day-ahead orders using stochastic programming and noise-driven
RNNs.
arXiv preprint arXiv:1910.04510, 2019.
Submitted for consideration to Energy Systems. Under review

Martin Biel (KTH) Licentiate thesis, November 2!
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Day-ahead problem - Electricity market
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Figure: Deregulated electricity market.
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Figure: Deregulated electricity market.
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Day-ahead problem - Electricity market

Balance responsible

Actor 1 A Actor 1
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Day-ahead problem - Single order
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Figure: Single hourly order.
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Day-ahead problem - Setting

Price taking hydropower producer trading in the NordPool market

All power stations in the Swedish river Skelleftedlven

First stage: hourly electricity volume bids for the upcoming day

> Single hourly orders
> Block orders

Second stage: optimize day-ahead production

» Bid dispatch after market price realization

» Imbalances penalized in intraday market

> Water flow conversation (including water travel time)

» Maximize profits in the market and the future value of water

Full model defined in HydroModels. j1
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Day-ahead problem - Data

Deterministic

® Physical parameters for power plants in Skellefteélven

® Trade regulations from NordPool
Uncertain

® Day-ahead prices from NordPool

® Mean water flows in Skelleftedlven from SMHI
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Figure: Schematic of the power stations in Skelleftealven.
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Day-ahead problem - Data
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Figure: Historical day-ahead prices 2013-2018 from NordPool.
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Day-ahead problem - Forecasts

Recurrent neural networks (GRU)

°
® Trained on price data and mean flow data separately
e Early stopping to prevent overfitting
® Seasonality modeled through separate inputs to the network
® Driven by Gaussian noise
Dense 5 Dense T(Tl;,l Dense rOelgl Dense GRU 0.4 Dense relu
W — Ty—1 F-
25128 g 128 — 128 g 128 — 128 a 128ﬂ1}—>-’ﬂo t 3—64 - 64%64364ﬁ1 Tt
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Figure: Initializer network in the price Figure: Sequence generation network in
forecaster. the price forecaster.
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Day-ahead problem - Forecasts
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Figu re: Historical electricity price curves in January and electricity price curves generated using
the RNN forecaster in the same period.
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Day-ahead problem - Forecasts
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Figure: Historical local inflow in Skelleftedlven together and local inflow generated using the RNN
forecaster.
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Figure: Expected daily electricity price out of 1000 samples from the RNN forecaster. Two
standard deviations above and below the expected price is shown each hour.
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Day-ahead problem - Value of water

Marginal value of water has large impact on optimal dispatch
® Sometimes optimal to accept imbalance penalty and save water

e Naive approach: production from excess water solved at mean price

Leads to crude order strategies
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Day-ahead problem - Value of water

e Solve a dummy stochastic program:
» First stage: water content in reservoirs
> Second stage: optimize production over the coming week
» Future prices and water inflows are uncertain
® | -shaped generates a polyhedral objective approximation
® Approximation used to model the expected future value of water

Figure: Polyhedral approximation.
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Day-ahead problem - Algorithm

VSS typically low in day-ahead problems

Generate tight confidence intervals trough sequential SAA algorithm
e Ensure statistically significant VSS

SAA instances of ~2000 scenarios required to reach this bound

» -5 million variables
» ~3.3 million constraints
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Day-ahead problem - Results
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Figure: Seasonal variation of day-ahead VRP and EEV, including 95% confidence intervals.
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Day-ahead problem - Order strategies
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Figure: Day-ahead strategy.
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Day-ahead problem - Order strategies

Single Orders
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Day-ahead problem - Order strategies

Single Orders
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Figure: Deterministic order strategy.
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Day-ahead problem - Imbalance penalty
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Figure: Day-ahead VSS as a function of imbalance penalty.
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Day-ahead problem - Final Remarks

Discussion

® V/SS linked to imbalance penalties in the intraday market
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Day-ahead problem - Final Remarks

Discussion

® V/SS linked to imbalance penalties in the intraday market
® Results are only as accurate/useful as the water valuation

® Proof of concept for large-scale models in StochasticPrograms.jl
Summary

® | arge-scale day-ahead problem solved on compute cluster
® Noise-driven recurrent neural networks to sample scenarios

® Tight confidence intervals through sequential SAA
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Conclusion

Conclusion

Summary
e Efficient distributed stochastic programming methods
® Software framework for modeling and solving stochastic programs
® Performance improvements of the L-shaped algorithm
e Effectiveness of the framework illustrated with the day-ahead problem

Outlook on future research
® Multi-stage stochastic programming
® Sample-based algorithms

e Advanced cut aggregation
® More hydropower decision problems in StochasticPrograms.jl

Martin Biel (KTH) Licentiate thesis, November 29, 2019
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