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Motivation - Hydropower operations

• Hydroelectric power production
• Spatial dependence
• Temporal dependence
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Motivation - Hydropower operations

• Uncertain local inflow

• Uncertain electricity price
• Uncertain renewable production
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Motivation - Hydropower operations

• Store energy in water reservoirs
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Motivation - Optimization models

• Decision support: formulate and solve optimization models

• Common: trade-off between accuracy and computation time
• Aim: provide reliable decision-support in a short amount of time

I Accurate models: optimal model reductions
I Fast computations: scalable algorithms on commodity hardware

Figure: Manageable models Figure: Scalable algorithms
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Motivation - Stochastic programming

Mathematical framework for decision problems subjected to uncertainty

Decision Observation Recourse

Actions

• Investments
• Schedules
• Orders

Uncertainties
• Demand
• Weather conditions
• Market price

Actions

• Restock
• Reschedule
• Settle imbalances
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Motivation - Stochastic programming

Stochastic programming for hydropower operations
• Order strategies in deregulated electricity markets
• Capacity expansion
• Coordination with renewable production
• Maintenance scheduling
• Seasonal planning: reservoir contents before spring flood
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Contribution

• StochasticPrograms.jl: framework for stochastic programming

• Distributed stochastic programming for large-scale models
• Efficient implementations of structure-exploiting algorithms
• Algorithmic innovations and software patterns
• Detailed consideration of a hydropower problem
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Outline

1 Introduction

2 Preliminaries

3 Distributed stochastic programming

4 Dynamic cut aggregation in L-shaped algorithms

5 Optimal order strategies in a day-ahead market

6 Conclusion
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Preliminaries - Stochastic program

• First stage decision: x

• Recourse decision: y
• Uncertainty: ξ(ω) : Ω→ RN random variable on the set of events Ω

First stage

minimize
x∈Rn cT x

+ Eξ[Q(x , ξ(ω))]

subject to Ax = b
x ≥ 0

Second stage

Q(x , ξ(ω)) = min
y∈Rm qT

ω y

s.t. W y = hω − Tωx
y ≥ 0
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Preliminaries - Stochastic program

Definition (Linear two-stage stochastic program)
A linear two-stage stochastic program is given by

minimize
x∈Rn cT x + Eξ[Q(x , ξ(ω))]

subject to Ax = b
x ≥ 0,

where
Q(x , ξ(ω)) = min

y∈Rm qT
ω y

s.t. Tωx + Wy = hω
y ≥ 0.

The optimal value is called the value of the recourse problem (VRP).

Martin Biel (KTH) Licentiate thesis, November 29, 2019 9
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Preliminaries - Stochastic performance

Definition (Expected value decision)
Given

ξ̄ = Eξ[ξ(ω)]

the expected value decision x̄ associated with a given stochastic
program is given by the solution to

minimize
x∈Rn

cT x + Q(x , ξ̄)

s.t. Ax = b
x ≥ 0.

This problem is known as the expected value problem.
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Preliminaries - Stochastic performance

Definition
The expected result of the expected value decision, or the EEV, is
given by

EEV = cT x̄ + Eξ[Q(x̄ , ξ(ω))].

Definition
The value of the stochastic solution, or the VSS, is given by

VSS = VRP − EEV .
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Preliminaries - Finite extensive form

• Ω finite

• ξ discrete random variable

minimize
x∈Rn,ys∈Rm cT x +

n∑

s=1
πsqT

s ys

subject to Ax = b
Tsx + Wys = hs , s = 1, . . . , n
x ≥ 0, ys ≥ 0, s = 1, . . . , n

Also commonly referred to as the deterministic equivalent problem, or the
DEP.
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Preliminaries - Sample average approximation

• Ω infinite

• ξ continuous random variable
• Sample n scenarios ωs , s = 1, . . . , n independently from Ω

minimize
x∈Rn,ys∈Rm cT x + 1

n

n∑

s=1
qT

s ys

subject to Ax = b
Tsx + Wys = hs , s = 1, . . . , n
x ≥ 0, ys ≥ 0, s = 1, . . . , n

• Asymptotic convergence as n goes to infinity
• Confidence intervals around optimal solution
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Preliminaries - Solution algorithms

All methods boil down to solving the finite extensive form

minimize
x∈Rn,ys∈Rm cT x +

n∑

s=1
πsqT

s ys

subject to Ax = b
Tsx + Wys = hs , s = 1, . . . , n
x ≥ 0, ys ≥ 0, s = 1, . . . , n

• Direct solution
• The L-shaped algorithm
• Progressive hedging
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Preliminaries - Solution algorithms



A
T1 W
T2 W
...

. . .

W




Tn

Figure: Stochastic program structure.
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Preliminaries - The L-shaped algorithm

X = {x ∈ Rn | Ax = b, x ≥ 0}
X̂ = Optimal set

X̂
x0

x1

x2

Figure: Cutting-plane method
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Preliminaries - The L-shaped algorithm
Master problem

minimize
x∈Rn

cT x + θ

subject to Ax = b
∂Qkx + θ ≥ qk , ∀k
x ≥ 0

Subproblems

minimize
ys∈Rm

Qk
s = qT

s ys

subject to Wys = hs − Tsxk

ys ≥ 0

Optimality cuts

∂Qk =
n∑

s=1
πsλ

T
s Ts , qk =

n∑

s=1
πsλ

T
s hs
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Preliminaries - The L-shaped algorithm
Master problem

minimize
x∈Rn

cT x +
n∑

s=1
θs

subject to Ax = b
∂Q1,kx + θ1 ≥ q1,k ,

... ∀k
∂Qn,kx + θn ≥ qn,k ,

x ≥ 0

Subproblems

minimize
ys∈Rm

Qk
s = qT

s ys

subject to Wys = hs − Tsxk

ys ≥ 0

Optimality cuts

∂Qs,k = πsλ
T
s Ts , qs,k = pisλT

s hs
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Preliminaries - The L-shaped algorithm

Q(x) Q1(x)

Q2(x)

Q3(x)

Figure: L-shaped procedure

Martin Biel (KTH) Licentiate thesis, November 29, 2019 15



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Preliminaries - The L-shaped algorithm

Q(x) Q1(x)

Q2(x)

Q3(x)

Figure: L-shaped procedure

Martin Biel (KTH) Licentiate thesis, November 29, 2019 15



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Preliminaries - The L-shaped algorithm

Q(x) Q1(x)

Q2(x)

Q3(x)

Figure: L-shaped procedure

Martin Biel (KTH) Licentiate thesis, November 29, 2019 15



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Preliminaries - The L-shaped algorithm

Q(x) Q1(x)

Q2(x)

Q3(x)

Figure: L-shaped procedure

Martin Biel (KTH) Licentiate thesis, November 29, 2019 15



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Preliminaries - The L-shaped algorithm

Q(x) Q1(x)

Q2(x)

Q3(x)

Figure: L-shaped procedure

Martin Biel (KTH) Licentiate thesis, November 29, 2019 15



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Preliminaries - The L-shaped algorithm

Q(x) Q1(x)

Q2(x)

Q3(x)

Figure: L-shaped procedure

Martin Biel (KTH) Licentiate thesis, November 29, 2019 15



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Preliminaries - The L-shaped algorithm

Q(x) Q1(x)

Q2(x)

Q3(x)

Figure: L-shaped procedure

Martin Biel (KTH) Licentiate thesis, November 29, 2019 15



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Preliminaries - The L-shaped algorithm

Q(x) Q1(x)

Q2(x)

Q3(x)

Figure: L-shaped procedure

Martin Biel (KTH) Licentiate thesis, November 29, 2019 15



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Preliminaries - The L-shaped algorithm

Q(x) Q1(x)

Q2(x)

Q3(x)

Figure: L-shaped procedure

Martin Biel (KTH) Licentiate thesis, November 29, 2019 15



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Preliminaries - The L-shaped algorithm

Q(x) Q1(x)

Q2(x)

Q3(x)

Figure: L-shaped procedure

Martin Biel (KTH) Licentiate thesis, November 29, 2019 15



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Outline

1 Introduction

2 Preliminaries

3 Distributed stochastic programming

4 Dynamic cut aggregation in L-shaped algorithms

5 Optimal order strategies in a day-ahead market

6 Conclusion

Martin Biel (KTH) Licentiate thesis, November 29, 2019 15



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Motivation

• Industry-scale applications typically involve 10,000+ scenarios

• Example: 24-hour unit commitment problem [Petra et al (2014)]
I 16,384 scenarios
I 1.95 billion variables and constraints in the extended form
I ~ 1 hour computation time on a Titan supercomputer

• Long computation time required to optimize
• Memory requirement exceeds the capacity of a single machine

Parallel algorithms that work on distributed data are required
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Contribution

• StochasticPrograms.jl: framework for stochastic programming

• Formulate, solve and analyze stochastic models
• Distributed-memory implementation for large-scale models
• Efficient implementations of structure-exploiting algorithms

Publications

• Martin Biel and Mikael Johansson. Efficient stochastic programming in Julia.
arXiv preprint arXiv:1909.10451, 2019.
Submitted for consideration to Mathematical Programming Computation. Under review,

• Martin Biel and Mikael Johansson. Distributed L-shaped algorithms in Julia.
In 2018 IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-ATM).
IEEE, 2018.
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StochasticPrograms.jl

• Flexible and expressive problem definition
• Deferred model instantiation
• Scenario data injection
• Variety of tools for model analysis

I VSS
I EVPI
I Confidence intervals
I . . .

• Memory-distributed
• Minimize data passing

I Lightweight sampler objects to generate scenario data
I Lightweight model recipes to generate second stage problems

• Interface to structure-exploiting (distributed) solver algorithms
I L-shaped variants (LShapedSolvers.jl)
I Progressive-hedging variants (ProgressiveHedgingSolvers.jl)
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StochasticPrograms.jl - Simple model

minimize
x1,x2∈R

100x1 + 150x2 + Eξ[Q(x1, x2, ξ)]

subject to x1 + x2 ≤ 120
x1 ≥ 40
x2 ≥ 20

where
Q(x1, x2, ξ) = min

y1,y2∈R
q1(ξ)y1 + q2(ξ)y2

subject to 6y1 + 10y2 ≤ 60x1
8y1 + 5y2 ≤ 80x2
0 ≤ y1 ≤ d1(ξ)
0 ≤ y2 ≤ d2(ξ)
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StochasticPrograms.jl - Simple model

� �
simple_model = @stochastic_model begin

@stage 1 begin
@variable(model, x1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, x1 + x2 <= 120)

end
@stage 2 begin

@decision x1 x2
@uncertain q1 q2 d1 d2
@variable(model, 0 <= y1 <= d1)
@variable(model, 0 <= y2 <= d2)
@objective(model, Min, q1*y1 + q2*y2)
@constraint(model, 6*y1 + 10*y2 <= 60*x1)
@constraint(model, 8*y1 + 5*y2 <= 80*x2)

end
end� �

JuMP syntax
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StochasticPrograms.jl - Discrete distribution

Let ξ have a discrete probability distribution, taking on the value

ξ1 =
(
500 100 −24 −28

)T

with probability 0.4 and

ξ2 =
(
300 300 −28 −32

)T

with probability 0.6.
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StochasticPrograms.jl - Discrete distribution

� �
ξ 1 = Scenario(q1 = -24.0, q2 = -28.0, d1 = 500.0, d2 = 100.0, probability = 0.4);
ξ 2 = Scenario(q1 = -28.0, q2 = -32.0, d1 = 300.0, d2 = 300.0, probability = 0.6);
sp = instantiate(simple_model, [ξ 1,ξ 2])

Stochastic program with:
* 2 decision variables
* 2 recourse variables
* 2 scenarios of type Scenario

Solver is default solver� �
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StochasticPrograms.jl - Discrete distribution� �
p r i n t ( s p )

F i r s t - s t a g e
==============
Min 100 x 1 + 150 x 2
S u b j e c t t o
x 1 + x 2 ≤ 120
x 1 ≥ 40
x 2 ≥ 20

S e c ond - s t a g e
==============
Subp r o b l em 1 ( p = 0 .4 0 ) :
Min - 24 y 1 - 28 y 2
S u b j e c t t o
- 60 x 1 + 6 y 1 + 10 y 2 ≤ 0
- 80 x 2 + 8 y 1 + 5 y 2 ≤ 0
0 ≤ y 1 ≤ 500
0 ≤ y 2 ≤ 100

S u b p r o b l em 2 ( p = 0 .6 0 ) :
Min - 28 y 1 - 32 y 2
S u b j e c t t o
6 y 1 + 10 y 2 - 60 x 1 ≤ 0
8 y 1 + 5 y 2 - 80 x 2 ≤ 0
0 ≤ y 1 ≤ 300
0 ≤ y 2 ≤ 300� �
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StochasticPrograms.jl - Discrete distribution

� �
dep = DEP(sp)
print(dep)

Min 100 x1 + 150 x2 - 9.6 y11 - 11.2 y2 1 - 16.8 y12 - 19.2 y2 2
Subject to
x1 + x2 ≤ 120
6 y11 + 10 y2 1 - 60 x1 ≤ 0
8 y11 + 5 y2 1 - 80 x2 ≤ 0
6 y12 + 10 y2 2 - 60 x1 ≤ 0
8 y12 + 5 y2 2 - 80 x2 ≤ 0
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x2 ≥ 20
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0 ≤ y12 ≤ 300
0 ≤ y2 2 ≤ 300� �
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StochasticPrograms.jl - Discrete distribution

� �
vrp = VRP(sp, solver = gurobi) # value of the recourse problem
-855.83

vss = VSS(sp, solver = gurobi) # value of the stochastic solution
286.92� �
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StochasticPrograms.jl - Continuous distribution

Let instead ξ have a multivariate normal distribution ξ ∼ N (µ,Σ), where

µ =




−28
−32
300
300


 , Σ =




2 0.5 0 0
0.5 1 0 0
0 0 50 20
0 0 20 30
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StochasticPrograms.jl - Continuous distribution

� �
@sampler SimpleSampler = begin

N::MvNormal

SimpleSampler(µ, Σ) = new(MvNormal(µ, Σ))

@sample Scenario begin
x = rand(sampler.N)
return Scenario(q1 = x[1], q2 = x[2], d1 = x[3], d2 = x[4])

end
end

µ = [-28, -32, 300, 300]
Σ = [2 0.5 0 0

0.5 1 0 0
0 0 50 20
0 0 20 30]

sampler = SimpleSampler(µ, Σ)� �
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StochasticPrograms.jl - Continuous distribution

� �
saa = SAA(simple_model, sampler, 100)

Stochastic program with:
* 2 decision variables
* 2 recourse variables
* 100 scenarios of type Scenario

Solver is default solver� �

� �
confidence_interval(simple_model, sampler; solver = glpk, confidence = 0.95,

N = 100)
Confidence interval (p = 95%): [-2630.44 — -2389.31]� �� �
confidence_interval(simple_model, sampler; solver = glpk, confidence = 0.95,

N = 1000)
Confidence interval (p = 95%): [-2568.90 — -2509.78]� �
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StochasticPrograms.jl - Solvers

� �
optimize!(sp, solver = GurobiSolver())
optimal_value(sp)
-855.83� �

� �
optimize!(sp, solver = LShapedSolver(gurobi))
L-Shaped Gap Time: 0:00:00 (6 iterations)
Objective: -855.8333
Gap: 0.0
No. cuts: 7
Iterations: 6� �� �

optimize!(sp, solver = ProgressiveHedgingSolver(gurobi))
Progressive Hedging Time: 0:00:06 (1315 iterations)
Objective: -855.8333
δ: 9.570267362791345e-7� �
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StochasticPrograms.jl - Distributed models

� �
using Distributed
addprocs(2)
...
sp = instantiate(simple_model, [ξ 1, ξ 2])
Distributed stochastic program with:
* 2 decision variables
* 2 recourse variables
* 2 scenarios of type Scenario

Solver is default solver� �

� �
optimize!(sp, solver = LShapedSolver(gurobi, distributed = true))
Distributed L-Shaped Gap (thresh = 1e-06, value = 0.0)
Objective: -855.833
Gap: 0.0
No. cuts: 5
Iterations: 4� �
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StochasticPrograms.jl - Implementation

D : · · ·

C : · · ·

minimize
x∈Rn

cT x +

s.t. Ax = b

x ≥ 0

Master

W1 : · · ·

S1 : minimize
yi ∈Rm

qT
s ys

s.t. Wys = hs − Ts

ys ≥ 0

Worker 1
Wr : · · ·

Sr : minimize
yi ∈Rm

qT
s ys

s.t. Wys = hs − Ts

ys ≥ 0

Worker r

· · ·

Figure: Distributed L-shaped procedure
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StochasticPrograms.jl - Numerical experiments

The day-ahead problem
• Optimal order strategies on a deregulated electricity market
• From the perspective of a hydropower producer
• First stage: Hourly electricity volume bids for the upcoming day
• Second stage: Optimize production when market price is known
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StochasticPrograms.jl - Numerical experiments
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Figure: Confidence intervals around optimal value of the day-ahead problem as a
function of SAA sample size.
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StochasticPrograms.jl - Numerical experiments
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Figure: Median computation time required for L-shaped algorithms to solve a
day-ahead problem with 1000 scenarios, as a function of number of worker cores.
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StochasticPrograms.jl - Numerical experiments
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StochasticPrograms.jl - Numerical experiments

Cut aggregation

• Partition optimality cuts into uniform aggregates
• ∂Qa,k =

∑

s∈Sa

πsλ
T
s Ts , qa,k =

∑

s∈Sa

πsλ
T
s hs

• Reduce amount of passed data
• Master problem does not grow as fast

Martin Biel (KTH) Licentiate thesis, November 29, 2019 25



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

StochasticPrograms.jl - Numerical experiments

Cut aggregation
• Partition optimality cuts into uniform aggregates

• ∂Qa,k =
∑

s∈Sa

πsλ
T
s Ts , qa,k =

∑

s∈Sa

πsλ
T
s hs

• Reduce amount of passed data
• Master problem does not grow as fast

Martin Biel (KTH) Licentiate thesis, November 29, 2019 25



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

StochasticPrograms.jl - Numerical experiments

Cut aggregation
• Partition optimality cuts into uniform aggregates
• ∂Qa,k =

∑

s∈Sa

πsλ
T
s Ts , qa,k =

∑

s∈Sa

πsλ
T
s hs

• Reduce amount of passed data
• Master problem does not grow as fast

Martin Biel (KTH) Licentiate thesis, November 29, 2019 25



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

StochasticPrograms.jl - Numerical experiments

Cut aggregation
• Partition optimality cuts into uniform aggregates
• ∂Qa,k =

∑

s∈Sa

πsλ
T
s Ts , qa,k =

∑

s∈Sa

πsλ
T
s hs

• Reduce amount of passed data

• Master problem does not grow as fast

Martin Biel (KTH) Licentiate thesis, November 29, 2019 25



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

StochasticPrograms.jl - Numerical experiments

Cut aggregation
• Partition optimality cuts into uniform aggregates
• ∂Qa,k =

∑

s∈Sa

πsλ
T
s Ts , qa,k =

∑

s∈Sa

πsλ
T
s hs

• Reduce amount of passed data
• Master problem does not grow as fast

Martin Biel (KTH) Licentiate thesis, November 29, 2019 25



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

StochasticPrograms.jl - Numerical experiments
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Figure: Median computation time required for the aggregated L-shaped method to
solve a day-ahead problem with 1000 scenarios. The experiment was performed on
8 worker cores.
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StochasticPrograms.jl - Summary

• StochasticPrograms.jl: framework for stochastic programming

• Formulate and solve memory-distributed stochastic programs
• Structure-exploiting algorithms that run in parallel on distributed data
• The full framework is open-source and freely available on Github

https://github.com/martinbiel
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• Uniform cut aggregation has been applied in many recent works
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Cut aggregation - Worst case analysis
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Cut aggregation - Worst case analysis

Definition
Let bs represent the maximum number of different slopes of Qs(x)
in any direction parallel to one of the axes. Then, b = maxs bs is the
slope number of Q(x).

Theorem (Birge and Louveaux, 1988)
The maximum number of iterations required to obtain an optimal
solution is, for single-cut L-shaped:

[1 + n(b − 1)]m,

and for multi-cut L-shaped:

1 + n(bm − 1).
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Static cut aggregation

Definition
A partitioning scheme

S = {S1, . . . ,SA}

of n scenarios is a set of partitions such that

Sa ⊆ {1, . . . , n}, a = 1, . . . ,A
Sa ∩ Sb = ∅, ∀a 6= b

A⋃

a=1
Sa = {1, . . . , n}.
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Static cut aggregation
Aggregated L-shaped master

minimize
x∈Rn

cT x +
A∑

a=1
θa

s.t. Ax = b
∂Qa,kx + θa ≥ qa,k , a = 1, . . . ,A ∀k
x ≥ 0

Aggregated optimality cuts

∂Qa,k =
∑

s∈Sa

πsλ
T
s Ts

qa,k =
∑

s∈Sa

πsλ
T
s hs
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Static cut aggregation

Definition
The aggregation size of the partitioning scheme S is given by

A(S) = |S|.

Definition
The aggregation level of the partitioning scheme S is given by

AL(S) = max
a=1,...,A(S)

|Sa|.
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Static cut aggregation

Q(x) Q1(x)

Q2(x) + Q3(x)

Figure: L-shaped with static aggregation
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Static cut aggregation

Theorem
The maximum number of iterations required to obtain an optimal
solution, of an aggregated L-shaped algorithm that uses a
partitioning scheme S = {S1, . . . ,SA(S)}, is given by

1 +
A(S)∑

a=1
[1 + |Sa|(b − 1)]m − A(S).
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Static cut aggregation

Corollary
The maximum number of iterations of an aggregated L-shaped
algorithm, using a partitioning scheme S = {S1, . . . ,SA}, is upper
bounded by

1 + A(S)([1 + AL(S)(b − 1)]m − 1).

Uniform cut aggregation
AL(S) = n/A(S). Hence, worst case is given by

nm(b − 1)m

A(S)m−1 < nm(b − 1)m
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Dynamic cut aggregation

Definition
A dynamic partitioning scheme

D = {Sk}∞k=1

is a sequence of partitioning schemes Sk = {Sk
1 , . . . ,Sk

Ak
}.
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Dynamic cut aggregation
Dynamically aggregated L-shaped master

minimize
x∈Rn

cT x +
n∑

s=1
θs

s.t. Ax = b
∑

s∈Ska

∂Qk,sx +
∑

s∈Ska

θs ≥
∑

s∈Ska

qs,k , Sk ∈ D ∀k

x ≥ 0.

Theorem
An L-shaped algorithm that uses dynamic cut aggregation, with a
dynamic partitioning scheme D = {Sk}∞k=1 converges to an optimal
solution of a given stochastic program in a finite number of
iterations.
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Dynamic cut aggregation

Complexity

Theorem
The maximum number of iterations required to obtain an optimal
solution, of an L-shaped algorithm that uses dynamic cut
aggregation with a dynamic partitioning scheme D = {Sk}∞k=1, is
given by

2 +
n∑

aL=1

(
n
aL

)
[1 + aL(b − 1)]m −

n∑

aL=1

{
n
aL

}
− A0.
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Dynamic cut aggregation

Hybrid aggregation

Corollary
The maximum number of iterations of an L-shaped algorithm with
dynamic cut aggregation, where the dynamic partitioning scheme D
satisfies

Sk = SN ∀Sk ∈ D, k > N

for some N, is given by

N + A(SN)
([
1 + AL(SN)(b − 1)

]m
− 1

)
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Dynamic cut aggregation - Aggregation schemes

• Dynamic aggregation
I SelectUniform
I SelectDecaying
I SelectClosest
I SelectClosestToReference

• Cluster aggregation
I ClusterByReference
I K-medoids

• Hybrid aggregation

Martin Biel (KTH) Licentiate thesis, November 29, 2019 33
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Numerical experiments - SSN
Provision bandwidth in a network before the precise point-to-point demands
are known.

Figure: Network topology in SSN problem [Sen et al (1994)]

SAA instance of n = 10 000 scenarios yields a relativevly tight confidence
interval around the optimum.
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Numerical experiments - Parameter tuning
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Figure: Empirical complexity for P = SSN with n = 1000 when using the SelectUniform decision
rule.
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Figure: Empirical complexity for P = SSN with n = 1000 when using the SelectDecaying
decision rule.
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Numerical experiments - Parameter tuning
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Figure: Empirical complexity for P = SSN with n = 1000 when using the SelectClosest decision
rule.
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Figure: Empirical complexity for P = SSN with n = 1000 when using the
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Numerical experiments - Parameter tuning
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Figure: Empirical complexity for P = SSN with n = 1000 when using the ClusterByReference
cluster rule.
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Numerical experiments - Parameter tuning

50 100 150 200 250

8000

10000

12000

14000

16000

NI(A, P)

N
C

(A
,P

)

K-medoids
Absolute distance
Angular distance

Spatioangular distance

Figure: Empirical complexity for P = SSN with n = 1000 when using K-medoids cluster rule.
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Numerical experiments - Small-scale SSN
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Figure: Empirical complexity and wall-clock time to solution for P = SSN with n = 1000
scenarios.
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Numerical experiments - Large-scale SSN
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Figure: Empirical complexity and wall-clock time to solution for P = SSN with n = 10 000
scenarios.
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Numerical experiments - Large-scale SSN

100 200 300

2.50× 104

5.00× 104

7.50× 104

NI(A,P)

N
C
(A

,P
)

SSN - Large-scale complexity

Multi-cut
Single-cut

SelectUniform
SelectDecaying

HybridSelectClosest
HybridSelectClosestToReference

HybridClusterByReference
Hybrid K-medoids

50

100

150

200

250

300

350

W
al

l-c
lo

ck
ti

m
e

to
so

lu
ti

on
[s

]

SSN - Large-scale performance

Multi-cut
Single-cut

SelectUniform
SelectDecaying

HybridSelectClosest
HybridSelectClosestToReference

HybridClusterByReference
Hybrid K-medoids

Figure: Empirical complexity and wall-clock time to solution for P = SSN with n = 10 000
scenarios, using the hybrid fixing strategy.
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Numerical experiments - Large-scale day-ahead

40 60 80

5.0 × 103

1.0 × 104

1.5 × 104

2.0 × 104

NI(A, P)

N
C

(A
,P

)

Day-ahead - Large-scale complexity

Multi-cut
Single-cut

SelectUniform
SelectDecaying
SelectClosest

SelectClosestToReference
ClusterByReference

K-medoids

50

100

150

200

250

300

350

400

450

W
al

l-c
lo

ck
tim

e
to

so
lu

tio
n

[s]

Day-ahead - Large-scale performance

Multi-cut
Single-cut

SelectUniform
SelectDecaying
SelectClosest

SelectClosestToReference
ClusterByReference

K-medoids

Figure: Empirical complexity and wall-clock time to solution for P = DA with n = 1000 scenarios.

Martin Biel (KTH) Licentiate thesis, November 29, 2019 37



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Numerical experiments - Large-scale day-ahead

40 60 80

5.0 × 103

1.0 × 104

1.5 × 104

2.0 × 104

NI(A, P)

N
C

(A
,P

)

Day-ahead - Large-scale complexity

Multi-cut
Single-cut

SelectUniform
SelectDecaying

HybridSelectClosest
HybridSelectClosestToReference

HybridClusterByReference
Hybrid K-medoids

50

100

150

200

250

300

350

400

450

W
al

l-c
lo

ck
tim

e
to

so
lu

tio
n

[s]

Day-ahead - Large-scale performance

Multi-cut
Single-cut

SelectUniform
SelectDecaying

HybridSelectClosest
HybridSelectClosestToReference

HybridClusterByReference
Hybrid K-medoids

Figure: Empirical complexity and wall-clock time to solution for P = DA with
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Martin Biel (KTH) Licentiate thesis, November 29, 2019 37



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Cut aggregation - Final Remarks

Discussion
• Worst-case bounds are not reached

• Hard to reason about average case
• Heuristic aggregation schemes can improve performance

Summary
• Novel aggregation procedures in L-shaped algorithms
• Convergence is preserved
• Performance improvements in distributed settings
• Worst-case analysis
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Contribution

• Determine optimal order strategies in a deregulated electricity market

• Complete modeling procedure

I Data gathering
I Forecast generation
I Model formulation
I Optimization
I Result visualization

Publications

• Martin Biel. Optimal day-ahead orders using stochastic programming and noise-driven
RNNs.
arXiv preprint arXiv:1910.04510, 2019.
Submitted for consideration to Energy Systems. Under review
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Day-ahead problem - Electricity market
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Figure: Deregulated electricity market.
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Day-ahead problem - Single order
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Martin Biel (KTH) Licentiate thesis, November 29, 2019 41



Introduction Preliminaries Distributed stochastic programming Cut aggregation Day-ahead Conclusion

Day-ahead problem - Setting

• Price taking hydropower producer trading in the NordPool market

• All power stations in the Swedish river Skellefteälven
• First stage: hourly electricity volume bids for the upcoming day

I Single hourly orders
I Block orders

• Second stage: optimize day-ahead production
I Bid dispatch after market price realization
I Imbalances penalized in intraday market
I Water flow conversation (including water travel time)
I Maximize profits in the market and the future value of water

• Full model defined in HydroModels.jl
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Day-ahead problem - Data

Deterministic
• Physical parameters for power plants in Skellefteälven
• Trade regulations from NordPool

Uncertain
• Day-ahead prices from NordPool
• Mean water flows in Skellefteälven from SMHI
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Day-ahead problem - Data

Figure: Schematic of the power stations in Skellefteälven.
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Day-ahead problem - Data

Figure: Historical day-ahead prices 2013-2018 from NordPool.
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Day-ahead problem - Data

Figure: Mean water flow in Skellefteälven 1999-2018 from SMHI.
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Day-ahead problem - Forecasts

• Recurrent neural networks (GRU)

• Trained on price data and mean flow data separately
• Early stopping to prevent overfitting
• Seasonality modeled through separate inputs to the network
• Driven by Gaussian noise
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Day-ahead problem - Forecasts
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Figure: Historical electricity price curves in January and electricity price curves generated using
the RNN forecaster in the same period.
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Day-ahead problem - Forecasts
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Figure: Daily electricity price curves predicted by the RNN forecaster in every month of the year.
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Day-ahead problem - Forecasts
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Figure: Historical local inflow in Skellefteälven together and local inflow generated using the RNN
forecaster.
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Day-ahead problem - Price levels
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Figure: Expected daily electricity price out of 1000 samples from the RNN forecaster. Two
standard deviations above and below the expected price is shown each hour.
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Day-ahead problem - Value of water

• Marginal value of water has large impact on optimal dispatch

• Sometimes optimal to accept imbalance penalty and save water
• Naive approach: production from excess water solved at mean price
• Leads to crude order strategies
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Day-ahead problem - Value of water

• Solve a dummy stochastic program:
I First stage: water content in reservoirs
I Second stage: optimize production over the coming week
I Future prices and water inflows are uncertain

• L-shaped generates a polyhedral objective approximation
• Approximation used to model the expected future value of water

Figure: Polyhedral approximation.
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Day-ahead problem - Algorithm

• VSS typically low in day-ahead problems

• Generate tight confidence intervals trough sequential SAA algorithm
• Ensure statistically significant VSS
• SAA instances of ~2000 scenarios required to reach this bound

I ~5 million variables
I ~3.3 million constraints
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Day-ahead problem - Results
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Figure: Seasonal variation of day-ahead VRP and EEV, including 95% confidence intervals.
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Day-ahead problem - Order strategies
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Figure: Day-ahead strategy.
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Day-ahead problem - Order strategies
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Day-ahead problem - Imbalance penalty
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Figure: Day-ahead VSS as a function of imbalance penalty.
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Day-ahead problem - Final Remarks

Discussion
• VSS linked to imbalance penalties in the intraday market

• Results are only as accurate/useful as the water valuation
• Proof of concept for large-scale models in StochasticPrograms.jl

Summary
• Large-scale day-ahead problem solved on compute cluster
• Noise-driven recurrent neural networks to sample scenarios
• Tight confidence intervals through sequential SAA
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