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Traditional approach
Geometric path computed on before hand.

Optimal path following along the computed path.
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Problem formulation

General problem: Investigate the possibility of constructing a
real-time capable trajectory planner, where:

The underlying path should be allowed to change dynamically.

The planner should be able to react to sensor events, and deform
the trajectory accordingly.
The trajectory should be consistent with some given system
dynamics.

Target application: Conveyor tracking

Pick and place.
Collision avoidance.
Track moving targets.
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Preliminaries - Robot modelling
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Preliminaries - Robot modelling

Forward kinematics: yyy = χy (qqq)

Inverse kinematics: qqq = χ−1
y (yyy)

Velocity Jacobian: vvv = J(qqq)q̇qq
Dynamics: M(qqq(t))q̈qq(t) + C(qqq(t), q̇qq(t))q̇qq(t) + g(qqq(t)) = τττ(t)
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Preliminaries - Optimal control problem

Time minimizing formulation

min
τττ(.)

T s.t.



M(qqq(t))q̈qq(t) + C(qqq(t), q̇qq(t))q̇qq(t) + g(qqq(t)) = τττ(t)
qqq(t) ∈ Q
τττ− ≤ τττ(t) ≤ τττ+

yyy(t) = χy (qqq(t))

yyy(0) = yyy0, ẏyy(0) = ẏyy0

yyy(T ) = yyyT , ẏyy(T ) = ẏyyT
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Preliminaries - Timed elastic band

Introduce the state vector

xxx(t) =

(
qqq(t)
q̇qq(t)

)
as a solution trajectory to the optimal control problem.

Discretize the trajectory into a so called Timed Elastic Band (TEB)
set B := {xxx1, τττ1,xxx2, τττ2, . . . ,xxxn−1, τττn−1,xxxn,∆T}. Note that n and
∆T are NOT fixed.
Determine the system dynamics for xxx(t) and approximate them
using forward Euler,

xxxk+1 − xxxk

∆T
= Axxxk + B(f (xxxk ) + h(xxxk )τττ k )
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Preliminaries - Timed elastic band

min
B

(n − 1)∆T

s.t.
xxxk+1 − xxxk

∆T
− Axxxk + B(f (xxxk ) + h(xxxk )τττ k ) = 0 (k = 1,2, . . . ,n − 1)

τττ− ≤ τττ k ≤ τττ+ (k = 1,2, . . . ,n − 1)

xxx1 = xxxs, xxxn = xxx f , ∆T > 0(
xxxs =

(
qqqs
q̇qqs

)
, xxx f =

(
χ−1

y (yyyT )
000

))

The optimization problem is solved on-line using non-linear model
predictive control techniques, in the timed elastic band framework.
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Trajectory Planner - Deformation
Deformation in time

During each control cycle, the following TEB update is performed ĪTEB
times

TEB update i−


Insert a new state if ∆Ti > ∆T̄ref + ∆T̄hyst ∧ ni < n̄max

Remove a state if ∆Ti < ∆T̄ref −∆T̄hyst ∧ ni > n̄min

Leave the TEB unchanged otherwise

Deformation in space

After each TEB update, the trajectory is improved by running an
optimization solver for ĪSQP iterations with respect to the underlying
non-linear optimization problem.

The underlying solver is based on Sequential Quadratic
Programming and employs line-search through an l1 merit
function.
Automatic differentiation is used to compute the required gradients
and Jacobians.

In total, ĪTEB · ĪSQP optimization iterations are performed each cycle.
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Trajectory Planner - Collision avoidance
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Trajectory Planner - Collision avoidance

min
B

(n − 1)∆T −
m∑

j=1

∑
k∈Kj,σ̄op

||χy (Cxxxk )−Oj ||2

s.t.
xxxk+1 − xxxk

∆T
− Axxxk + B(f (xxxk ) + g(xxxk )τττ k ) = 0 (k = 1, . . . ,n − 1)

τττ− ≤ τττ k ≤ τττ+ (k = 1, . . . ,n − 1)

xxx1 = xxxs, xxxn = xxx f , ∆T > 0
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Trajectory Planner - Track moving targets

The objective is to track some moving target, represented here by
the curve yyy tg(t) in operational space.

In configuration space, the end-condition becomes

qqqf = χ−1
y (yyy tg(T ))

q̇qqf = J(qqqf )−1ẏyy tg
(T )

Alternatively, the target state is replaced with the prediction

yyy tg
i + (ni−1 − 1)∆Tivvv
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Algorithm 1 Trajectory Planning

Input: qqqs - current state; q̇qqs - current velocity; yyy f - target; ẏyy f - target
velocity; O - obstacle information

Output: (Sub-)optimal control input τττ
1: procedure PLANTRAJECTORY

2: repeat
3: (qqqs, q̇qqs, yyy f , ẏyy f )← READSENSORINPUT

4: O ← INFORMABOUTOBSTACLES

5: for each iteration 1 to ĪTEB do
6: B ← DEFORMINTIME(B)
7: P ←SETUPUNDERLYINGPROBLEM(B, O, qqqs, q̇qqs, yyy f , ẏyy f )
8: for each iteration 1 to ĪSQP do
9: B ← SQPSOLVE(B,P)

10: end for
11: end for
12: τ ← APPLYCONTROL(B)
13: until target has been reached
14: end procedure
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Trajectory Planner - Implementation

The trajectory planner is implemented as a software package in
C++.

Notable third-party libraries:
I Eigen - for matrix/vector storage and linear algebra operations.
I qpOASES - for solving the arising quadratic subproblems during

the SQP procedure.
I CppAD - for automatic differentiation. Used to compute gradients

and Jacobians.

In specific applications, the trajectory planner is extended in a
subclass that configures the planner and provides the appropriate
system dynamics.
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Simulations - PlanarElbow/SCARA model
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Scenario 1: Pick and place

Demonstration
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Scenario 1: Simple target - Time
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(a) Snapshots of the
intermediate planned
trajectories, taken
every 0.5s, together
with the actual realized
trajectory.
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(c) The control input
signal that was applied
during the procedure.

Figure: Trajectory planning procedure for the PlanarElbow model with a
simple stationary target at (−1,1) and aiming to minimize transition time. The
planner was configured with the default values.
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Scenario 1: Simple target - Energy
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Figure: Trajectory planning procedure for the PlanarElbow model with a
simple stationary target at (−1,1) and aiming to minimize energy. The
planner was configured with the default values.
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Scenario 2: Avoid obstacles
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Figure: A single obstacle with radius 0.3m is placed at (0.5,1.8). The planner
was configured with the default values.
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(c) The control input
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during the procedure.

Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values.
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Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values, but with "obstacleCloseProximity"
: 1.
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Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values, but with "obstacleCloseProximity"
: 0.1.
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signal that was applied
during the procedure.

Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values, but with "referenceTime" : 0.05
and "Iteb" : 3. The simulation was run with a sample time of 0.05s.
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during the procedure.

Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values, but with "Isqp" : 4.
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signal that was applied
during the procedure.

Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values, but with "Isqp" : 4 and
"multipleTrajectories": true.
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during the procedure.

Figure: A single obstacle with radius 0.2m is placed at (1,1.2), and moving in
the direction (0.94,0.35) with speed 0.1m/s. The planner was configured with
the default values.
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Figure: Three obstacles are added to the workspace: One at (1,1.2) with
radius 0.2m, moving in the direction (0.94,0.35) with speed 0.1m/s; One
stationary obstacle at (−1,−1) with radius 0.4m; and finally one at (0.5,0.5)
with radius 0.3m, moving in the direction (0,1) with speed 5m/s. The planner
was configured with the default values, but with "multipleTrajectories"
: true.
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Scenario 3: Track moving target

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Target trajectory
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Moving Target - Robot movement

Target trajectory
Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot
and the moving target.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Moving Target - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: Trajectory planning procedure for the PlanarElbow model with a
moving target initially located at (−1,−1) and moving in the direction (0,1)
with speed 0.1m/s. The aim is to minimize transition time. The planner was
configured with the default values.
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Scenario 1: Pick and place

Demonstration
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Evaluation of results
The planner is, in many different scenarios, successful in
generating a feasible trajectory in relation to the different goals
and the provided constraints.

When employing the time-minimizing strategy, the resulting
trajectories often appear to be quasi time-optimal.
The results of the pick-and-place scenario shows the planners
potential as an alternative to the two-step approach when
operating in dynamic environments.

The results of the more complicated examples indicate that many
of the employed strategies are too primitive, and need to be
explored further.
Many of the examples, and the appararent parameter sensitivity,
indicate that the planner needs to be tailored for use in specific
applications.
More work required to make the planner real-time capable.
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Improvements and future work

Utilize the sparsity of the underlying optimization problem.

Explore trust-region methods as an alternative to line-search in
the SQP procedure.
Robust MPC techniques to counter issues that arise from
inaccurate models.
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Final remarks

A trajectory planning procedure has been implemented and
presented in this work, and it looks promising for future use.

The intended application has been robotic manipulators, but the
planner can be extended to other optimal control problems.
The planner is successively applied in simple scenarios, but
needs further work before it can be used in a real applications.
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Questions?
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