
Sensor-based trajectory optimization
ABB Robotics

Master thesis
Martin Biel

Supervisor: Mikael Norrlöf
Examiner: Xiaoming Hu

June 9, 2016

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 1 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner

4 Simulations

5 Discussion and conclusion

6 Questions

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 2 / 52



Traditional approach
Geometric path computed on before hand.

Optimal path following along the computed path.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 3 / 52



Traditional approach
Geometric path computed on before hand.
Optimal path following along the computed path.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 3 / 52



Traditional approach
Geometric path computed on before hand.
Optimal path following along the computed path.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 4 / 52



Traditional approach
Geometric path computed on before hand.
Optimal path following along the computed path.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 5 / 52



Problem formulation

General problem: Investigate the possibility of constructing a
real-time capable trajectory planner, where:

The underlying path should be allowed to change dynamically.

The planner should be able to react to sensor events, and deform
the trajectory accordingly.
The trajectory should be consistent with some given system
dynamics.

Target application: Conveyor tracking

Pick and place.
Collision avoidance.
Track moving targets.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 6 / 52



Problem formulation

General problem: Investigate the possibility of constructing a
real-time capable trajectory planner, where:

The underlying path should be allowed to change dynamically.
The planner should be able to react to sensor events, and deform
the trajectory accordingly.

The trajectory should be consistent with some given system
dynamics.

Target application: Conveyor tracking

Pick and place.
Collision avoidance.
Track moving targets.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 6 / 52



Problem formulation

General problem: Investigate the possibility of constructing a
real-time capable trajectory planner, where:

The underlying path should be allowed to change dynamically.
The planner should be able to react to sensor events, and deform
the trajectory accordingly.
The trajectory should be consistent with some given system
dynamics.

Target application: Conveyor tracking

Pick and place.
Collision avoidance.
Track moving targets.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 6 / 52



Problem formulation

General problem: Investigate the possibility of constructing a
real-time capable trajectory planner, where:

The underlying path should be allowed to change dynamically.
The planner should be able to react to sensor events, and deform
the trajectory accordingly.
The trajectory should be consistent with some given system
dynamics.

Target application: Conveyor tracking

Pick and place.
Collision avoidance.
Track moving targets.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 6 / 52



Problem formulation

General problem: Investigate the possibility of constructing a
real-time capable trajectory planner, where:

The underlying path should be allowed to change dynamically.
The planner should be able to react to sensor events, and deform
the trajectory accordingly.
The trajectory should be consistent with some given system
dynamics.

Target application: Conveyor tracking

Pick and place.

Collision avoidance.
Track moving targets.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 6 / 52



Problem formulation

General problem: Investigate the possibility of constructing a
real-time capable trajectory planner, where:

The underlying path should be allowed to change dynamically.
The planner should be able to react to sensor events, and deform
the trajectory accordingly.
The trajectory should be consistent with some given system
dynamics.

Target application: Conveyor tracking

Pick and place.
Collision avoidance.

Track moving targets.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 6 / 52



Problem formulation

General problem: Investigate the possibility of constructing a
real-time capable trajectory planner, where:

The underlying path should be allowed to change dynamically.
The planner should be able to react to sensor events, and deform
the trajectory accordingly.
The trajectory should be consistent with some given system
dynamics.

Target application: Conveyor tracking

Pick and place.
Collision avoidance.
Track moving targets.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 6 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner

4 Simulations

5 Discussion and conclusion

6 Questions

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 7 / 52



Preliminaries - Robot modelling

x

y

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 8 / 52



Preliminaries - Robot modelling

x

y

q1

q2

Q - Configuration space

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 9 / 52



Preliminaries - Robot modelling

x

y

q1

q2

(x , y)

Q - Configuration space
O - Operational space

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 10 / 52



Preliminaries - Robot modelling

x

y

q1

q2

(x , y)

Q - Configuration space
O - Operational space
W - Workspace

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 11 / 52



Preliminaries - Robot modelling

Forward kinematics: yyy = χy (qqq)

Inverse kinematics: qqq = χ−1
y (yyy)

Velocity Jacobian: vvv = J(qqq)q̇qq
Dynamics: M(qqq(t))q̈qq(t) + C(qqq(t), q̇qq(t))q̇qq(t) + g(qqq(t)) = τττ(t)

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 12 / 52



Preliminaries - Optimal control problem

Time minimizing formulation

min
τττ(.)

T s.t.



M(qqq(t))q̈qq(t) + C(qqq(t), q̇qq(t))q̇qq(t) + g(qqq(t)) = τττ(t)
qqq(t) ∈ Q
τττ− ≤ τττ(t) ≤ τττ+

yyy(t) = χy (qqq(t))

yyy(0) = yyy0, ẏyy(0) = ẏyy0

yyy(T ) = yyyT , ẏyy(T ) = ẏyyT

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 13 / 52



Preliminaries - Timed elastic band

Introduce the state vector

xxx(t) =

(
qqq(t)
q̇qq(t)

)
as a solution trajectory to the optimal control problem.

Discretize the trajectory into a so called Timed Elastic Band (TEB)
set B := {xxx1, τττ1,xxx2, τττ2, . . . ,xxxn−1, τττn−1,xxxn,∆T}. Note that n and
∆T are NOT fixed.
Determine the system dynamics for xxx(t) and approximate them
using forward Euler,

xxxk+1 − xxxk

∆T
= Axxxk + B(f (xxxk ) + h(xxxk )τττ k )

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 14 / 52



Preliminaries - Timed elastic band

Introduce the state vector

xxx(t) =

(
qqq(t)
q̇qq(t)

)
as a solution trajectory to the optimal control problem.

Discretize the trajectory into a so called Timed Elastic Band (TEB)
set B := {xxx1, τττ1,xxx2, τττ2, . . . ,xxxn−1, τττn−1,xxxn,∆T}. Note that n and
∆T are NOT fixed.

Determine the system dynamics for xxx(t) and approximate them
using forward Euler,

xxxk+1 − xxxk

∆T
= Axxxk + B(f (xxxk ) + h(xxxk )τττ k )

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 14 / 52



Preliminaries - Timed elastic band

Introduce the state vector

xxx(t) =

(
qqq(t)
q̇qq(t)

)
as a solution trajectory to the optimal control problem.

Discretize the trajectory into a so called Timed Elastic Band (TEB)
set B := {xxx1, τττ1,xxx2, τττ2, . . . ,xxxn−1, τττn−1,xxxn,∆T}. Note that n and
∆T are NOT fixed.
Determine the system dynamics for xxx(t) and approximate them
using forward Euler,

xxxk+1 − xxxk

∆T
= Axxxk + B(f (xxxk ) + h(xxxk )τττ k )

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 14 / 52



Preliminaries - Timed elastic band

min
B

(n − 1)∆T

s.t.
xxxk+1 − xxxk

∆T
− Axxxk + B(f (xxxk ) + h(xxxk )τττ k ) = 0 (k = 1,2, . . . ,n − 1)

τττ− ≤ τττ k ≤ τττ+ (k = 1,2, . . . ,n − 1)

xxx1 = xxxs, xxxn = xxx f , ∆T > 0(
xxxs =

(
qqqs
q̇qqs

)
, xxx f =

(
χ−1

y (yyyT )
000

))

The optimization problem is solved on-line using non-linear model
predictive control techniques, in the timed elastic band framework.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 15 / 52



Preliminaries - Timed elastic band

min
B

(n − 1)∆T

s.t.
xxxk+1 − xxxk

∆T
− Axxxk + B(f (xxxk ) + h(xxxk )τττ k ) = 0 (k = 1,2, . . . ,n − 1)

τττ− ≤ τττ k ≤ τττ+ (k = 1,2, . . . ,n − 1)

xxx1 = xxxs, xxxn = xxx f , ∆T > 0(
xxxs =

(
qqqs
q̇qqs

)
, xxx f =

(
χ−1

y (yyyT )
000

))

The optimization problem is solved on-line using non-linear model
predictive control techniques, in the timed elastic band framework.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 15 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner
Deformation
Collision avoidance
Track moving targets
Implementation

4 Simulations

5 Discussion and conclusion

6 Questions

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 16 / 52



Trajectory Planner - Deformation
Deformation in time

During each control cycle, the following TEB update is performed ĪTEB
times

TEB update i−


Insert a new state if ∆Ti > ∆T̄ref + ∆T̄hyst ∧ ni < n̄max

Remove a state if ∆Ti < ∆T̄ref −∆T̄hyst ∧ ni > n̄min

Leave the TEB unchanged otherwise

Deformation in space

After each TEB update, the trajectory is improved by running an
optimization solver for ĪSQP iterations with respect to the underlying
non-linear optimization problem.

The underlying solver is based on Sequential Quadratic
Programming and employs line-search through an l1 merit
function.
Automatic differentiation is used to compute the required gradients
and Jacobians.

In total, ĪTEB · ĪSQP optimization iterations are performed each cycle.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 17 / 52



Trajectory Planner - Deformation
Deformation in time
During each control cycle, the following TEB update is performed ĪTEB
times

TEB update i−


Insert a new state if ∆Ti > ∆T̄ref + ∆T̄hyst ∧ ni < n̄max

Remove a state if ∆Ti < ∆T̄ref −∆T̄hyst ∧ ni > n̄min

Leave the TEB unchanged otherwise

Deformation in space

After each TEB update, the trajectory is improved by running an
optimization solver for ĪSQP iterations with respect to the underlying
non-linear optimization problem.

The underlying solver is based on Sequential Quadratic
Programming and employs line-search through an l1 merit
function.
Automatic differentiation is used to compute the required gradients
and Jacobians.

In total, ĪTEB · ĪSQP optimization iterations are performed each cycle.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 17 / 52



Trajectory Planner - Deformation
Deformation in time
During each control cycle, the following TEB update is performed ĪTEB
times

TEB update i−


Insert a new state if ∆Ti > ∆T̄ref + ∆T̄hyst ∧ ni < n̄max

Remove a state if ∆Ti < ∆T̄ref −∆T̄hyst ∧ ni > n̄min

Leave the TEB unchanged otherwise

Deformation in space
After each TEB update, the trajectory is improved by running an
optimization solver for ĪSQP iterations with respect to the underlying
non-linear optimization problem.

The underlying solver is based on Sequential Quadratic
Programming and employs line-search through an l1 merit
function.
Automatic differentiation is used to compute the required gradients
and Jacobians.

In total, ĪTEB · ĪSQP optimization iterations are performed each cycle.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 17 / 52



Trajectory Planner - Deformation
Deformation in time
During each control cycle, the following TEB update is performed ĪTEB
times

TEB update i−


Insert a new state if ∆Ti > ∆T̄ref + ∆T̄hyst ∧ ni < n̄max

Remove a state if ∆Ti < ∆T̄ref −∆T̄hyst ∧ ni > n̄min

Leave the TEB unchanged otherwise

Deformation in space
After each TEB update, the trajectory is improved by running an
optimization solver for ĪSQP iterations with respect to the underlying
non-linear optimization problem.

The underlying solver is based on Sequential Quadratic
Programming and employs line-search through an l1 merit
function.

Automatic differentiation is used to compute the required gradients
and Jacobians.

In total, ĪTEB · ĪSQP optimization iterations are performed each cycle.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 17 / 52



Trajectory Planner - Deformation
Deformation in time
During each control cycle, the following TEB update is performed ĪTEB
times

TEB update i−


Insert a new state if ∆Ti > ∆T̄ref + ∆T̄hyst ∧ ni < n̄max

Remove a state if ∆Ti < ∆T̄ref −∆T̄hyst ∧ ni > n̄min

Leave the TEB unchanged otherwise

Deformation in space
After each TEB update, the trajectory is improved by running an
optimization solver for ĪSQP iterations with respect to the underlying
non-linear optimization problem.

The underlying solver is based on Sequential Quadratic
Programming and employs line-search through an l1 merit
function.
Automatic differentiation is used to compute the required gradients
and Jacobians.

In total, ĪTEB · ĪSQP optimization iterations are performed each cycle.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 17 / 52



Trajectory Planner - Deformation
Deformation in time
During each control cycle, the following TEB update is performed ĪTEB
times

TEB update i−


Insert a new state if ∆Ti > ∆T̄ref + ∆T̄hyst ∧ ni < n̄max

Remove a state if ∆Ti < ∆T̄ref −∆T̄hyst ∧ ni > n̄min

Leave the TEB unchanged otherwise

Deformation in space
After each TEB update, the trajectory is improved by running an
optimization solver for ĪSQP iterations with respect to the underlying
non-linear optimization problem.

The underlying solver is based on Sequential Quadratic
Programming and employs line-search through an l1 merit
function.
Automatic differentiation is used to compute the required gradients
and Jacobians.

In total, ĪTEB · ĪSQP optimization iterations are performed each cycle.
Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 17 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner
Deformation
Collision avoidance
Track moving targets
Implementation

4 Simulations

5 Discussion and conclusion

6 Questions

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 18 / 52



Trajectory Planner - Collision avoidance

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 19 / 52



Trajectory Planner - Collision avoidance

min
B

(n − 1)∆T −
m∑

j=1

∑
k∈Kj,σ̄op

||χy (Cxxxk )−Oj ||2

s.t.
xxxk+1 − xxxk

∆T
− Axxxk + B(f (xxxk ) + g(xxxk )τττ k ) = 0 (k = 1, . . . ,n − 1)

τττ− ≤ τττ k ≤ τττ+ (k = 1, . . . ,n − 1)

xxx1 = xxxs, xxxn = xxx f , ∆T > 0

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 20 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner
Deformation
Collision avoidance
Track moving targets
Implementation

4 Simulations

5 Discussion and conclusion

6 Questions

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 21 / 52



Trajectory Planner - Track moving targets

The objective is to track some moving target, represented here by
the curve yyy tg(t) in operational space.

In configuration space, the end-condition becomes

qqqf = χ−1
y (yyy tg(T ))

q̇qqf = J(qqqf )−1ẏyy tg
(T )

Alternatively, the target state is replaced with the prediction

yyy tg
i + (ni−1 − 1)∆Tivvv

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 22 / 52



Trajectory Planner - Track moving targets

The objective is to track some moving target, represented here by
the curve yyy tg(t) in operational space.
In configuration space, the end-condition becomes

qqqf = χ−1
y (yyy tg(T ))

q̇qqf = J(qqqf )−1ẏyy tg
(T )

Alternatively, the target state is replaced with the prediction

yyy tg
i + (ni−1 − 1)∆Tivvv

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 22 / 52



Trajectory Planner - Track moving targets

The objective is to track some moving target, represented here by
the curve yyy tg(t) in operational space.
In configuration space, the end-condition becomes

qqqf = χ−1
y (yyy tg(T ))

q̇qqf = J(qqqf )−1ẏyy tg
(T )

Alternatively, the target state is replaced with the prediction

yyy tg
i + (ni−1 − 1)∆Tivvv

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 22 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner
Deformation
Collision avoidance
Track moving targets
Implementation

4 Simulations

5 Discussion and conclusion

6 Questions

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 23 / 52



Algorithm 1 Trajectory Planning

Input: qqqs - current state; q̇qqs - current velocity; yyy f - target; ẏyy f - target
velocity; O - obstacle information

Output: (Sub-)optimal control input τττ
1: procedure PLANTRAJECTORY

2: repeat
3: (qqqs, q̇qqs, yyy f , ẏyy f )← READSENSORINPUT

4: O ← INFORMABOUTOBSTACLES

5: for each iteration 1 to ĪTEB do
6: B ← DEFORMINTIME(B)
7: P ←SETUPUNDERLYINGPROBLEM(B, O, qqqs, q̇qqs, yyy f , ẏyy f )
8: for each iteration 1 to ĪSQP do
9: B ← SQPSOLVE(B,P)

10: end for
11: end for
12: τ ← APPLYCONTROL(B)
13: until target has been reached
14: end procedure

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 24 / 52



Trajectory Planner - Implementation

The trajectory planner is implemented as a software package in
C++.

Notable third-party libraries:
I Eigen - for matrix/vector storage and linear algebra operations.
I qpOASES - for solving the arising quadratic subproblems during

the SQP procedure.
I CppAD - for automatic differentiation. Used to compute gradients

and Jacobians.

In specific applications, the trajectory planner is extended in a
subclass that configures the planner and provides the appropriate
system dynamics.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 25 / 52



Trajectory Planner - Implementation

The trajectory planner is implemented as a software package in
C++.
Notable third-party libraries:

I Eigen - for matrix/vector storage and linear algebra operations.
I qpOASES - for solving the arising quadratic subproblems during

the SQP procedure.
I CppAD - for automatic differentiation. Used to compute gradients

and Jacobians.

In specific applications, the trajectory planner is extended in a
subclass that configures the planner and provides the appropriate
system dynamics.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 25 / 52



Trajectory Planner - Implementation

The trajectory planner is implemented as a software package in
C++.
Notable third-party libraries:

I Eigen - for matrix/vector storage and linear algebra operations.

I qpOASES - for solving the arising quadratic subproblems during
the SQP procedure.

I CppAD - for automatic differentiation. Used to compute gradients
and Jacobians.

In specific applications, the trajectory planner is extended in a
subclass that configures the planner and provides the appropriate
system dynamics.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 25 / 52



Trajectory Planner - Implementation

The trajectory planner is implemented as a software package in
C++.
Notable third-party libraries:

I Eigen - for matrix/vector storage and linear algebra operations.
I qpOASES - for solving the arising quadratic subproblems during

the SQP procedure.

I CppAD - for automatic differentiation. Used to compute gradients
and Jacobians.

In specific applications, the trajectory planner is extended in a
subclass that configures the planner and provides the appropriate
system dynamics.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 25 / 52



Trajectory Planner - Implementation

The trajectory planner is implemented as a software package in
C++.
Notable third-party libraries:

I Eigen - for matrix/vector storage and linear algebra operations.
I qpOASES - for solving the arising quadratic subproblems during

the SQP procedure.
I CppAD - for automatic differentiation. Used to compute gradients

and Jacobians.

In specific applications, the trajectory planner is extended in a
subclass that configures the planner and provides the appropriate
system dynamics.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 25 / 52



Trajectory Planner - Implementation

The trajectory planner is implemented as a software package in
C++.
Notable third-party libraries:

I Eigen - for matrix/vector storage and linear algebra operations.
I qpOASES - for solving the arising quadratic subproblems during

the SQP procedure.
I CppAD - for automatic differentiation. Used to compute gradients

and Jacobians.

In specific applications, the trajectory planner is extended in a
subclass that configures the planner and provides the appropriate
system dynamics.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 25 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner

4 Simulations
Model
Scenario 1: Simple target
Scenario 2: Avoid obstacles
Scenario 3: Track moving target
Scenario 4: Pick and place

5 Discussion and conclusion

6 Questions
Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 26 / 52



Simulations - PlanarElbow/SCARA model

x

y

q1
m1

m2

q2

l1

l2

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 27 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner

4 Simulations
Model
Scenario 1: Simple target
Scenario 2: Avoid obstacles
Scenario 3: Track moving target
Scenario 4: Pick and place

5 Discussion and conclusion

6 Questions
Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 28 / 52



Scenario 1: Pick and place

Demonstration

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 29 / 52



Scenario 1: Simple target - Time

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories, taken
every 0.5s, together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Simple Target - Robot movement

Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Simple Target - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: Trajectory planning procedure for the PlanarElbow model with a
simple stationary target at (−1,1) and aiming to minimize transition time. The
planner was configured with the default values.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 30 / 52



Scenario 1: Simple target - Energy

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Simple Target - Robot movement

Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot.

0 1 2 3 4 5 6 7
Time t [s]

-2

-1

0

1

2

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Simple Target - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: Trajectory planning procedure for the PlanarElbow model with a
simple stationary target at (−1,1) and aiming to minimize energy. The
planner was configured with the default values.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 31 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner

4 Simulations
Model
Scenario 1: Simple target
Scenario 2: Avoid obstacles
Scenario 3: Track moving target
Scenario 4: Pick and place

5 Discussion and conclusion

6 Questions
Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 32 / 52



Scenario 2: Avoid obstacles

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid Obstacles - Robot movement

Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Avoid Obstacles - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: A single obstacle with radius 0.3m is placed at (0.5,1.8). The planner
was configured with the default values.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 33 / 52



Scenario 2: Avoid obstacles

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid Obstacles - Robot movement

Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot.

0 0.5 1 1.5 2 2.5
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Avoid Obstacles - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 34 / 52



Scenario 2: Avoid obstacles

-2 -1 0 1 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
P

os
iti

on
 y

 [m
]

Avoid obstacles - Trajectories

Planned trajectories
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid Obstacles - Robot movement

Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot.

0 1 2 3 4 5 6
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Avoid Obstacles - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values, but with "obstacleCloseProximity"
: 1.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 35 / 52



Scenario 2: Avoid obstacles

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid Obstacles - Robot movement

Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Avoid Obstacles - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values, but with "obstacleCloseProximity"
: 0.1.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 36 / 52



Scenario 2: Avoid obstacles

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid Obstacles - Robot movement

Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot.

0 1 2 3 4 5 6
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Avoid Obstacles - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values, but with "referenceTime" : 0.05
and "Iteb" : 3. The simulation was run with a sample time of 0.05s.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 37 / 52



Scenario 2: Avoid obstacles

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid Obstacles - Robot movement

Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot.

0 1 2 3 4 5 6
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Avoid Obstacles - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values, but with "Isqp" : 4.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 38 / 52



Scenario 2: Avoid obstacles

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid Obstacles - Robot movement

Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot.

0 1 2 3 4 5 6
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Avoid Obstacles - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: Two obstacles are added to the workspace: one at (0.5,1.8) with
radius 0.3m and one at (−0.2,1,3) with radius 0.2m. The planner was
configured with the default values, but with "Isqp" : 4 and
"multipleTrajectories": true.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 39 / 52



Scenario 2: Avoid obstacles

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid Obstacles - Robot movement

Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot
and the moving
obstacle.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Avoid Obstacles - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: A single obstacle with radius 0.2m is placed at (1,1.2), and moving in
the direction (0.94,0.35) with speed 0.1m/s. The planner was configured with
the default values.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 40 / 52



Scenario 2: Avoid obstacles

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid Obstacles - Robot movement

Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot
and the moving
obstacles.

0 0.5 1 1.5 2 2.5
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Avoid Obstacles - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: Three obstacles are added to the workspace: One at (1,1.2) with
radius 0.2m, moving in the direction (0.94,0.35) with speed 0.1m/s; One
stationary obstacle at (−1,−1) with radius 0.4m; and finally one at (0.5,0.5)
with radius 0.3m, moving in the direction (0,1) with speed 5m/s. The planner
was configured with the default values, but with "multipleTrajectories"
: true.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 41 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner

4 Simulations
Model
Scenario 1: Simple target
Scenario 2: Avoid obstacles
Scenario 3: Track moving target
Scenario 4: Pick and place

5 Discussion and conclusion

6 Questions
Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 42 / 52



Scenario 3: Track moving target

-2 -1 0 1 2 3
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Avoid obstacles - Trajectories

Planned trajectories
Target trajectory
Actual trajectory

(a) Snapshots of the
intermediate planned
trajectories together
with the actual realized
trajectory.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Position x [m]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 y
 [m

]

Moving Target - Robot movement

Target trajectory
Initial position
Intermediate positions
Final Position

(b) The movement
pattern of the robot
and the moving target.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time t [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
on

tr
ol

 In
pu

t τ
 [N

m
]

Moving Target - Control Input

Joint 1
Joint 2

(c) The control input
signal that was applied
during the procedure.

Figure: Trajectory planning procedure for the PlanarElbow model with a
moving target initially located at (−1,−1) and moving in the direction (0,1)
with speed 0.1m/s. The aim is to minimize transition time. The planner was
configured with the default values.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 43 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner

4 Simulations
Model
Scenario 1: Simple target
Scenario 2: Avoid obstacles
Scenario 3: Track moving target
Scenario 4: Pick and place

5 Discussion and conclusion

6 Questions
Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 44 / 52



Scenario 1: Pick and place

Demonstration

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 45 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner

4 Simulations

5 Discussion and conclusion
Evaluation of results
Improvements and future work
Final remarks

6 Questions

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 46 / 52



Evaluation of results
The planner is, in many different scenarios, successful in
generating a feasible trajectory in relation to the different goals
and the provided constraints.

When employing the time-minimizing strategy, the resulting
trajectories often appear to be quasi time-optimal.
The results of the pick-and-place scenario shows the planners
potential as an alternative to the two-step approach when
operating in dynamic environments.

The results of the more complicated examples indicate that many
of the employed strategies are too primitive, and need to be
explored further.
Many of the examples, and the appararent parameter sensitivity,
indicate that the planner needs to be tailored for use in specific
applications.
More work required to make the planner real-time capable.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 47 / 52



Evaluation of results
The planner is, in many different scenarios, successful in
generating a feasible trajectory in relation to the different goals
and the provided constraints.
When employing the time-minimizing strategy, the resulting
trajectories often appear to be quasi time-optimal.

The results of the pick-and-place scenario shows the planners
potential as an alternative to the two-step approach when
operating in dynamic environments.

The results of the more complicated examples indicate that many
of the employed strategies are too primitive, and need to be
explored further.
Many of the examples, and the appararent parameter sensitivity,
indicate that the planner needs to be tailored for use in specific
applications.
More work required to make the planner real-time capable.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 47 / 52



Evaluation of results
The planner is, in many different scenarios, successful in
generating a feasible trajectory in relation to the different goals
and the provided constraints.
When employing the time-minimizing strategy, the resulting
trajectories often appear to be quasi time-optimal.
The results of the pick-and-place scenario shows the planners
potential as an alternative to the two-step approach when
operating in dynamic environments.

The results of the more complicated examples indicate that many
of the employed strategies are too primitive, and need to be
explored further.
Many of the examples, and the appararent parameter sensitivity,
indicate that the planner needs to be tailored for use in specific
applications.
More work required to make the planner real-time capable.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 47 / 52



Evaluation of results
The planner is, in many different scenarios, successful in
generating a feasible trajectory in relation to the different goals
and the provided constraints.
When employing the time-minimizing strategy, the resulting
trajectories often appear to be quasi time-optimal.
The results of the pick-and-place scenario shows the planners
potential as an alternative to the two-step approach when
operating in dynamic environments.

The results of the more complicated examples indicate that many
of the employed strategies are too primitive, and need to be
explored further.

Many of the examples, and the appararent parameter sensitivity,
indicate that the planner needs to be tailored for use in specific
applications.
More work required to make the planner real-time capable.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 47 / 52



Evaluation of results
The planner is, in many different scenarios, successful in
generating a feasible trajectory in relation to the different goals
and the provided constraints.
When employing the time-minimizing strategy, the resulting
trajectories often appear to be quasi time-optimal.
The results of the pick-and-place scenario shows the planners
potential as an alternative to the two-step approach when
operating in dynamic environments.

The results of the more complicated examples indicate that many
of the employed strategies are too primitive, and need to be
explored further.
Many of the examples, and the appararent parameter sensitivity,
indicate that the planner needs to be tailored for use in specific
applications.

More work required to make the planner real-time capable.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 47 / 52



Evaluation of results
The planner is, in many different scenarios, successful in
generating a feasible trajectory in relation to the different goals
and the provided constraints.
When employing the time-minimizing strategy, the resulting
trajectories often appear to be quasi time-optimal.
The results of the pick-and-place scenario shows the planners
potential as an alternative to the two-step approach when
operating in dynamic environments.

The results of the more complicated examples indicate that many
of the employed strategies are too primitive, and need to be
explored further.
Many of the examples, and the appararent parameter sensitivity,
indicate that the planner needs to be tailored for use in specific
applications.
More work required to make the planner real-time capable.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 47 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner

4 Simulations

5 Discussion and conclusion
Evaluation of results
Improvements and future work
Final remarks

6 Questions

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 48 / 52



Improvements and future work

Utilize the sparsity of the underlying optimization problem.

Explore trust-region methods as an alternative to line-search in
the SQP procedure.
Robust MPC techniques to counter issues that arise from
inaccurate models.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 49 / 52



Improvements and future work

Utilize the sparsity of the underlying optimization problem.
Explore trust-region methods as an alternative to line-search in
the SQP procedure.

Robust MPC techniques to counter issues that arise from
inaccurate models.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 49 / 52



Improvements and future work

Utilize the sparsity of the underlying optimization problem.
Explore trust-region methods as an alternative to line-search in
the SQP procedure.
Robust MPC techniques to counter issues that arise from
inaccurate models.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 49 / 52



Outline

1 Introduction

2 Preliminaries

3 Trajectory Planner

4 Simulations

5 Discussion and conclusion
Evaluation of results
Improvements and future work
Final remarks

6 Questions

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 50 / 52



Final remarks

A trajectory planning procedure has been implemented and
presented in this work, and it looks promising for future use.

The intended application has been robotic manipulators, but the
planner can be extended to other optimal control problems.
The planner is successively applied in simple scenarios, but
needs further work before it can be used in a real applications.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 51 / 52



Final remarks

A trajectory planning procedure has been implemented and
presented in this work, and it looks promising for future use.
The intended application has been robotic manipulators, but the
planner can be extended to other optimal control problems.

The planner is successively applied in simple scenarios, but
needs further work before it can be used in a real applications.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 51 / 52



Final remarks

A trajectory planning procedure has been implemented and
presented in this work, and it looks promising for future use.
The intended application has been robotic manipulators, but the
planner can be extended to other optimal control problems.
The planner is successively applied in simple scenarios, but
needs further work before it can be used in a real applications.

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 51 / 52



Questions?

Martin Biel (KTH) Sensor-based trajectory optimization June 9, 2016 52 / 52


	Introduction
	Preliminaries
	Trajectory Planner
	Deformation
	Collision avoidance
	Track moving targets
	Implementation

	Simulations
	Model
	Scenario 1: Simple target
	Scenario 2: Avoid obstacles
	Scenario 3: Track moving target
	Scenario 4: Pick and place

	Discussion and conclusion
	Evaluation of results
	Improvements and future work
	Final remarks

	Questions

