KTH ROYAL INSTITUTE
OF TECHNOLOGY

Distributed L-shaped Algorithms in Julia

Martin Biel

KTH - Royal Institute of Technology

November 16, 2018

Motivation - Stochastic programming

decision x

Martin Biel (KTH) November 16, 2018

Motivation - Stochastic programming

decision x — observation &(w)

Martin Biel (KTH) November 16, 2018

Motivation - Stochastic programming

decision x — observation {(w) — recoursey

Martin Biel (KTH) November 16, 2018

Motivation - Stochastic programming

decision x — observation {(w) — recoursey

* Determine optimal decision X based on predicted outcomes {w;}7_,

Martin Biel (KTH) November 16, 2018

Motivation - Stochastic programming

decision x — observation {(w) — recoursey

* Determine optimal decision X based on predicted outcomes {w;}_
° Numerous industry applications

1

> Power systems
> Finance
> Transportation

Martin Biel (KTH) November 16, 2018

Motivation - Stochastic programming

decision x — observation {(w) — recoursey

* Determine optimal decision X based on predicted outcomes {w;}_
° Numerous industry applications

1

> Power systems
> Finance
> Transportation

¢ Traditional procedure

» Formulate deterministically equivalent optimization problem
> Optimize extended form using standard solvers

Martin Biel (KTH) November 16, 2018

Motivation - Limitations of standard approaches

® Industry-scale applications typically involve 10,000+ scenarios

Martin Biel (KTH) November 16, 2018

Motivation - Limitations of standard approaches

® Industry-scale applications typically involve 10,000+ scenarios
* Example: 24-hour unit commitment problem [Petra et al (2014)]

> 16,384 scenarios
> 1.95 billion variables and constraints in the extended form
> ~ 1 hour computation time on a Titan supercomputer

Martin Biel (KTH) November 16, 2018

Motivation - Limitations of standard approaches

® Industry-scale applications typically involve 10,000+ scenarios
* Example: 24-hour unit commitment problem [Petra et al (2014)]

> 16,384 scenarios
> 1.95 billion variables and constraints in the extended form
> ~ 1 hour computation time on a Titan supercomputer

* Long computation time required to optimize

Martin Biel (KTH) November 16, 2018

Motivation - Limitations of standard approaches

® Industry-scale applications typically involve 10,000+ scenarios
* Example: 24-hour unit commitment problem [Petra et al (2014)]

> 16,384 scenarios
> 1.95 billion variables and constraints in the extended form
> ~ 1 hour computation time on a Titan supercomputer

Long computation time required to optimize
Memory requirement exceeds the capacity of a single machine

Martin Biel (KTH) November 16, 2018

Motivation - Limitations of standard approaches

® Industry-scale applications typically involve 10,000+ scenarios
* Example: 24-hour unit commitment problem [Petra et al (2014)]

> 16,384 scenarios
> 1.95 billion variables and constraints in the extended form
> ~ 1 hour computation time on a Titan supercomputer

Long computation time required to optimize
Memory requirement exceeds the capacity of a single machine

Parallel algorithms that work on distributed data are required

Martin Biel (KTH) November 16, 2018

Contribution

* Framework for formulating and solving stochastic programs

Martin Biel (KTH) November 16, 2018

Contribution

* Framework for formulating and solving stochastic programs
® A collection of L-shaped algorithms

Martin Biel (KTH) November 16, 2018

Contribution

* Framework for formulating and solving stochastic programs
® A collection of L-shaped algorithms
¢ Distributed-memory setting

Martin Biel (KTH) November 16, 2018

Contribution

Framework for formulating and solving stochastic programs
A collection of L-shaped algorithms

Distributed-memory setting

Complex functionality using simple abstractions in Julia

Martin Biel (KTH) November 16, 2018

Contribution

* Framework for formulating and solving stochastic programs
® A collection of L-shaped algorithms

¢ Distributed-memory setting

e Complex functionality using simple abstractions in Julia

Rapidly formulate and solve real-world problems as stochastic programs

Martin Biel (KTH) November 16, 2018

Contribution - Framework

Workers

- Local scenario data ’] ’]
+ Local JuMP model ‘ B ‘]
L Cutsforglobal problem | 5™ ¢ g o o o
Worker 1 Worker N

* Global problem
- Global solver
|+ Worker coordination _| Master .

Run time

T Design time

Domain-specific models Hydromodels.jl
Algebraic modeling language StochasticPrograms.jl

‘ . Scalable distributed solvers LShapedSolvers.jI

Figure: Overview of software framework.

November 16, 20

Outline

Background
Implementation

* Numerical experiments
Final remarks

Martin Biel (KTH) November 16, 2018

Background - Stochastic programming

Two-stage linear stochastic program
L T
minimize c' x4+ E,[Q(x, &(w))]

st. Ax=b
x>0

where

Qx, £(w)) = min aly

st T,x+ Wy=h,
y=0

Martin Biel (KTH) November 16, 2018

Two-stage linear stochastic program
L T
minimize c' x4+ E,[Q(x, &(w))]

st. Ax=b
x>0

where

Qx,&(@)) = min Ly

st T,x+ Wy=h,
y=0

Martin Biel (KTH)

Background - Stochastic programming

Deterministically equivalent form

n

minimize ¢'x + Z n,-q‘.Ty,-

xeRN,y;eRM =
st. Ax=0b
Tix + Wiy = h;,
x>0,y; >0,

November 16, 2018

Martin Biel (KTH)

A
(&

%74
W

Figure: L-shaped structure.

November 16, 2018

Background - Stochastic programming

)

W)

Background - L-shaped algorithm

Cutting-plane algorithms

©

X={xeR"Ax = b, x > 0}
X = Optimal set

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018

Background - L-shaped algorithm

Cutting-plane algorithms

X={xeR"Ax = b, x > 0}
X = Optimal set

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018

Background - L-shaped algorithm

Cutting-plane algorithms

X={xeR"Ax = b, x > 0}
X = Optimal set

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018

Background - L-shaped algorithm

Cutting-plane algorithms

X={xeR"|Ax=b,x >0} X4
X = Optimal set

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018

Background - L-shaped algorithm

Cutting-plane algorithms

X={xeR"Ax = b, x > 0}
X = Optimal set

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018

Background - L-shaped algorithm

Cutting-plane algorithms

X2 X0

X={xeR"|Ax=b,x >0} X4
X = Optimal set

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018

Master problem

n
minimize CTX—I—ZQ,'
xeRN =

st. Ax=0>b
JQx +0;>q,
x>0

Martin Biel (KTH)

i=1,...

,n

Background - L-shaped algorithm

Subproblems

Qf =ajy

minimize
yieRm
sit. Wy = h; - Tix

yi=0

Q= n,-A,TjT,-
qj = mAlh;

November 16, 2018

Background - L-shaped algorithm

Master problem Subproblems
. k _ AT\,
mlyrgelglnlze Q' =q;yi
n
minimize ¢7x + Z 0; st Wy, =h - Tix;
XeRN £
i= yiz0
st. Ax=0b
JQx +0;>q, i=1,...,n
x>0 T
Q; = n,-/\,.JT,-
qj = mAlh;

® One master problem, n subproblems

Theoretical convergence guarantees

® Convergence can be improved through regularization procedures
® Readily extended to operate in parallel on distributed data

Martin Biel (KTH) November 16, 2018

Implementation - StochasticPrograms. ||

* Flexible problem definition

® Deferred model instantiation
® Scenario data injection

° Memory-distributed

® Minimize data passing

> Lightweight sampler objects to generate data
> Lightweight model recipes to generate second stage problems

® Interface to structure-exploiting solver algorithms
® Registered Julia package

Martin Biel (KTH) November 16, 2018

Implementation - Model recipes

@first_stage sp = begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
@objective(model, Min, 100*x; + 150%x,)
@constraint(model, x; + x, <= 120)

end

@second_stage sp = begin
@decision x4 X,
& = scenario
@variable(model, 0 <= y; <= &£.dy)
@variable(model, 0 <= y, <= &£.dy)
@objective(model, Min, &£.q1*yy + £.d2%Y5)
@constraint(model, 6*y; + 10*y, <= 60%x4)
@constraint(model, 8*y; + 5%y, <= 80%x,)
end

Martin Biel (KTH) November 16, 20

Implementation - Model recipes

@first_stage sp = begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
@objective(model, Min, 100*x; + 150%x,)
@constraint(model, x; + x, <= 120)

end

@second_stage sp = begin
@decision x; X, JuMP Syntax
& = scenario
@variable(model, 0 <= y; <= &£.d¢)
@variable(model, 0 <= y, <= &£.dy)
@objective(model, Min, &£.q:1*yy + £.d2%Y5)
@constraint(model, 6*y; + 10%y, <= 60%*xy)
@constraint(model, 8*y; + 5%y, <= 80%x,)
end

Martin Biel (KTH) November 16, 2018

Implementation - Model recipes

@first_stage sp = begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
@objective(model, Min, 100*x; + 150%x,)
@constraint(model, x; + x, <= 120)

end minimize 100x; 4+ 150xo
X1,X2€R

@second_stage sp = begin st X+ X <120
@decision x4 X,
& = scenario X1 240
@variable(model, ® <= y; <= &£.d4) Xo > 20
@variable(model, O <=y, <= £.dy)
@objective(model, Min, &.q¢*y; + £.42%y5)
@constraint(model, 6*y; + 10*y, <= 60%x4)
@constraint(model, 8*y; + 5%y, <= 80%x,)

end

Martin Biel (KTH) November 16, 2018

Implementation - Model recipes

@first_stage sp = begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
@objective(model, Min, 100%x; + 150%x,)
@constraint(model, x; + x, <= 120)

ond myi1rjji/2n;]i§e G1(&) y1 + G2(&) y2

@second_stage sp = begin s.t. 6y +10y2 <60 X

@decision x; Xp 8y; + 5y> < 80 x»
& = scenario

@variable(model, 0 <= y; <= &.dy) 0<y; < di(&)
@variable(model, 0 <= y, <= &£.dy)

@objective(model, Min, &.qi*y; + &.Q%y5) 0<ysr < da(é)

@constraint(model, 6*y; + 10%y, <= 60%*xy)
@constraint(model, 8*y; + 5%y, <= 80%x,)
end

Martin Biel (KTH) November 16, 2018

Implementation - Model recipes

@first_stage sp = begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
@objective(model, Min, 100*x; + 150%x,)
@constraint(model, x; + x, <= 120)

il minimize a1 (&) y1+ G(&) ye
@second_stage sp = begin st Byr +10y2 <60 X
@decision x; X, 8y1 + 5y» < 80 Xo
& = scenario
@variable(model, 0 <= y; <= &.d;) 0<y; < di(&)
@variable(model, 0 <= y, <= &£.dy)

@objective(model, Min, &.qi*y; + &.Q5%Y,) 0<ys < do(&)
@constraint(model, 6*y; + 10*y, <= 60%x4)
@constraint(model, 8*y; + 5%y, <= 80%x,)

end

Martin Biel (KTH) November 16, 2018

Implementation - Model recipes

@first_stage sp = begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
@objective(model, Min, 100%x; + 150%x,)
@constraint(model, x; + x, <= 120)

il minimize a1(&) y1+ G(&) ye
@second_stage sp = begin st Byr +10y2 <60 X
@decision x4 X, 8y1 + 5y» < 80 xo
& = scenario
@variable(model, 0 <= y; <= &.d;) 0<y; < di(&)
@variable(model, 0 <= y, <= &£.dy)

@objective(model, Min, &.qi*y; + &.Q5%Y,) 0<ys < do(&)
@constraint(model, 6*y; + 10*y, <= 60%x4)
@constraint(model, 8*y; + 5%y, <= 80%x,)

end

Martin Biel (KTH) November 16, 2018

Implementation - LShapedSolvers.|l

¢ Collection of L-shaped algorithms

Martin Biel (KTH) November 16, 2018

Implementation - LShapedSolvers.|l

¢ Collection of L-shaped algorithms
® Eight variants in total

> Three different regularization procedures
> Distributed variants of each algorithm
> Numerous tweakable parameters

Martin Biel (KTH) November 16, 2018

Implementation - LShapedSolvers.|l

¢ Collection of L-shaped algorithms
® Eight variants in total

> Three different regularization procedures
> Distributed variants of each algorithm
> Numerous tweakable parameters

® Trait-based implementation

Martin Biel (KTH) November 16, 2018

Implementation - LShapedSolvers.|l

Collection of L-shaped algorithms
Eight variants in total

> Three different regularization procedures
» Distributed variants of each algorithm
> Numerous tweakable parameters

Trait-based implementation
¢ Interfaces to StochasticPrograms.jl

Martin Biel (KTH) November 16, 2018

Implementation - Distributed computations in Julia

¢ Distributed computing in Julia revolves around two primitives:

> Remote references: administer which node data resides on
> Remote calls: schedule execution tasks on the distributed data

Martin Biel (KTH) November 16, 2018

Implementation - Distributed computations in Julia

¢ Distributed computing in Julia revolves around two primitives:

> Remote references: administer which node data resides on
> Remote calls: schedule execution tasks on the distributed data

® A channel administers data on one process

Martin Biel (KTH) November 16, 2018

Implementation - Distributed computations in Julia

Distributed computing in Julia revolves around two primitives:

» Remote references: administer which node data resides on
» Remote calls: schedule execution tasks on the distributed data

A channe1 administers data on one process
The channe1 data is readable and writable from all processes.
Calling put on a remote channel involves data passing

Martin Biel (KTH) November 16, 2018

Implementation - Distributed computations in Julia

Distributed computing in Julia revolves around two primitives:

» Remote references: administer which node data resides on
» Remote calls: schedule execution tasks on the distributed data

A channe1 administers data on one process

The channe1 data is readable and writable from all processes.
Calling put on a remote channel involves data passing
Calling fetch on a remote channel involves data fetching

Martin Biel (KTH) November 16, 2018

Implementation - Distributed computations in Julia

Distributed computing in Julia revolves around two primitives:

» Remote references: administer which node data resides on
» Remote calls: schedule execution tasks on the distributed data

A channe1 administers data on one process

The channe1 data is readable and writable from all processes.
Calling put on a remote channel involves data passing
Calling fetch on a remote channel involves data fetching

A remote call returns a ruture to the result

Martin Biel (KTH) November 16, 2018

Implementation - Distributed computations in Julia

Distributed computing in Julia revolves around two primitives:

» Remote references: administer which node data resides on
» Remote calls: schedule execution tasks on the distributed data

A channe1 administers data on one process

The channe1 data is readable and writable from all processes.
Calling put on a remote channel involves data passing
Calling fetch on a remote channel involves data fetching

A remote call returns a ruture to the result

A process can wait for data to arrive on a remote reference

Martin Biel (KTH) November 16, 2018

Master node

® Decisions: Master solutions (D)

Implementation - Distributed L-shaped channels

Worker nodes

® jorker: Local subproblems (S)

® CutQueue: Optimality cuts from workers (C) ® TJork: Index into Decisions (‘W)

Martin Biel (KTH)

November 16, 2018

Implementation - Distributed L-shaped channels

Master node Worker nodes
® Decisions: Master solutions (D) ® jorker: Local subproblems (S)
® CutQueue: Optimality cuts from workers (C) ® TJork: Index into Decisions (‘W)

® Master determines first stage decisions and shedules worker tasks

* Workers solve subproblems given first stage decisions and generate optimality cuts
The amount of cuts needed to proceed is governed by a asynchronicity parameter x
Timestamps used to synchronize and check convergence

Martin Biel (KTH) November 16, 2018

Implementation - Distributed L-shaped tasks

Master node

function do_work! (master::Master,
cuts: :CutQueue,
decisions: :Decisions,
workers: :Vector{Work})
Xo = initialize(Q)
put! (decisions, 0, xq)
send_work (workers, 1)
while true
wait(cuts)
(t,Q,cut) = take!(cuts)
add_cut! (master, cut)
if added_cuts(master,t) > k*nscenarios(master)
Enough information to resolve master
X1 = solve(master)
Send new work to remote nodes
put! (decisions, t+1, X;.4)
send_work (workers, t+1)

end
if added_cuts(master,t) == nscenarios(master) && converged(master)
return :Optimal
end
end
end

November 16, 20

Implementation - Distributed L-shaped tasks

Worker nodes

function do_work! (worker: :Worker,

decisions: :Decisions)
subproblems: :Vector{SubProblem} = fetch(worker)
while true

wait(work)
t::Int = take! (work)
if t == -1
Worker finished
return
end

x = fetch(decisions,t)
Update and solve all local subproblems
@sync for subproblem in subproblems
@async begin
update_subproblem! (subproblem,x)
cut = subproblem()
Q = cut(x)
Send optimality cut to master, with timestamp
of decision and objective value
put! (cuts, (t,Q,cut))
end
end
end
end

November 16, 20

Worker 1

~Eoo]

Sy

minimize quys
YieRM
st. Wys=hs—Ts
Ys20

Martin Biel (KTH)

Master

Implementation - Distributed L-shaped

Worker r

Sr:

L T
minimize G s
st Wys=hs—Ts
¥s20

minimize ¢'x +
XERM

D: D D D st. Ax=b

c: 000 - x20

Figure: Distributed L-shaped procedure

November 16, 2018

Implementation - Distributed L-shaped

Worker 1 Worker r

Si ¢ [minimiz alys e o o S,/ | minimize alys
Yi€ER™ yi€R™
s.t. =hs—Ts st. Wys=hs—Ts
Ys 2 ¥s20

<

pass pass
Master

mi)r(\eiwyize cTx+
D: o0 - st Ax=b
o [x20

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018

Implementation - Distributed L-shaped

Worker 1 Worker r
w@ OO - w @O0 -
N miyr’\EiE'lmize alys e o o S mileGiEVEze q;rys

st. Wys=hs— Tsxo st Wys = hs Ngxo
ys20 'f\ YM
7 —

/fetch Master Tetch

/ mi)r(\eiwyize cTx+
D: D st. Ax=b
c: OO0 - x20

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018

Implementation - Distributed L-shaped

Worker 1 Worker r
w@ OO - w @O0 -
N miyr’\EiE'lmize alys e o o Sr: mil‘/l?ei?rize q;rys

st Wys =hs - Tsxg st Wys =hs — Tsxo
Ys=0 ¥s=0
p\ Master
\ minimize ¢'x +
XERM

D: E D D st. Ax=b
c:[MO0 - x20

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018

Worker 1

~Eoo]

Sy

— T
minimize
Ve 9s¥s

st. Wys =hs— Tsxo

Martin Biel (KTH)

Implementation - Distributed L-shaped

Worker r

v @O0 |

Sr:

L T
minimize G s
st Wys = hs— Tsxo
¥s20

Ys20
Mas%
minimize ¢'x +
XERM
D: st. Ax=b
c: 0l - x20

Figure: Distributed L-shaped procedure

November 16, 2018

Implementation - Distributed L-shaped

Worker 1 Worker r
w @O - w @O0
N miyr’\EiE'lmize alys e o o Sr: mil‘/l?ei?rize q;rys
st Wys =hs - Tsxg st Wys =hs — Tsxo
Ys=0 ¥s=0
pass\ Master

\ mi)r(\eiwyize CTX+§‘H,
D: @ o0 - st Ax=b

JQx+0;>q, i=1,..., n

c:[@O0O - x>0

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018

Implementation - Distributed L-shaped

Worker 1 Worker r

N minimize’ qs\¥s e o o Sr: Wmi\ze q;rys
Yi€R™ Yi€R™
st Wys =\bs — Tsxo st Wys =hs — Tsxo
Ys=0 ¥s=0

=

pass pass
pass Master

n

L T .

\ mI)I(IEI]I?{'I"IZE c X+ 519,
i=
o[BI - st Ax—b

Ax+0;i>2q, i=1,..., n

c:[@O0O - x>0

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018

Implementation - Distributed L-shaped

Worker 1 Worker r
Wi W

Sy : | minimize g e o o Sr: | minimize gl
inimize Gy inimize 63 s

st Wys = hs — Tsxq st Wys =hs — Tsxo
Ys 20 /% ¥s=0

e Master-sass

n
1Q-0l<t(e+IQl)? minimize CTX+ZQ;
1 XERM =
D: st. Ax=b
Ax+0;i>2q, i=1,..., n
c: x>0

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018

Implementation - Distributed L-shaped

Worker 1 Worker r
Wi W

Sy : | minimize qlys e o o S | minimize qlys
Yi€R™ Yi€R™
st Wys = hs — Tsxy st Wys = hs x4

Ys=0 Vs 2

—
pasx Master fetch

n

L T .

\ m|)r(1€|]|?{1"|ze CX+§19,
i=
D. n

Ax+0;i>2q, i=1,..., n

c:[@IMOOa - x>0

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018

Numerical experiments - Day-ahead problem

Optimal order strategies on a deregulated electricity market

From the perspective of a hydropower producer

First stage: Hourly electricity volume bids for the upcoming day
Second stage: Optimize production when market price is known
Market data taken from NordPool, used to sample scenarios
Physical data on hydroelectric plants in river Skelleftedlven

Full model included in #nydrotodels. j1

Martin Biel (KTH) November 16, 2018

Numerical experiments - Convergence

-3.5987e+07
-3.5995e+07
-3.6002e+07
-3.6009e+07
-3.6016e+07
-3.6023e+07

-3.6030e+07

-3.6037e+07 l’
I
-3.6044e+07]
1
-3.6051e+07 |

-3.6058e+07

1.0 6.0 11.0 160 210 260 31.0 360 41.0 460 510 56.0 61.0
Iteration

Figure: L-shaped convergence for a day-ahead problem with 10 price scenarios.

Martin Biel (KTH) November 16, 20

Computation Time T [s]

59.0

44.3

14.8

0.0

Numerical experiments - Single node

Trust-region

L-shaped

Gurobi

Linearized Regularized
Linearized Level set

10 50 100 200 300
Number of Scenarios N

Figure: Median computation time required to solve day-ahead problems.

Martin Biel (KTH)

November 16, 20

Numerical experiments - Strong scaling

e Day-ahead problem with 1000 price scenarios.
e Results in 2.5 million variables and 1.4 million constraints.
¢ Solving the extended form required 350+ seconds.

(— Distributed TR
—— Distributed L-shaped
—— Distributed LV
111.7 = Distributed RD

(— Distributed TR
—— Distributed L-st
—— Distributed LV
—— Distributed RD

Computation Time T [s]

Parallel Efficiency E [% of linear scaling]

haped

0.0

Number of Cores P

Figure: Computation time.

Martin Biel (KTH)

Number of Cores P

Figure: Parallel efficiency.

November 16, 2018

16

Numerical experiments - Load imbalance

E Master
B Worker
|—— Mean computation time per iteration

Worker
|[=—— Mean computation time per iteration

Computation Time T [s]
Computation Time T [s]

7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 13 14 15
Iteration i

Iteration i

Figure: 4 workers. Figure: 16 workers.

Martin Biel (KTH) November 16, 20

Numerical experiments - Load imbalance

Worker
|[=—— Mean computation time per iteration

Computation Time T [s]
Computation Time T [s]

7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 13 14 15
Iteration i

Iteration i

Figure: 4 workers with « = 1. Figure: 4 workers with x« = 0.5.

Martin Biel (KTH) November 16, 2018

Final Remarks

Discussion
® L-shaped algorithms outperform solving the extended form directly

Martin Biel (KTH) November 16, 2018

Final Remarks

Discussion

® L-shaped algorithms outperform solving the extended form directly
e Scalability affected by load imbalance

Martin Biel (KTH) November 16, 2018

Final Remarks

Discussion

® L-shaped algorithms outperform solving the extended form directly
e Scalability affected by load imbalance
* Performance of regularized variants affected by flat objective

Martin Biel (KTH) November 16, 2018

Final Remarks

Discussion

® L-shaped algorithms outperform solving the extended form directly
e Scalability affected by load imbalance
* Performance of regularized variants affected by flat objective

Outlook on future work

¢ Evaluate on other applied problems

> Larger scale
> Less flat

Martin Biel (KTH) November 16, 2018

Final Remarks

Discussion

® L-shaped algorithms outperform solving the extended form directly

e Scalability affected by load imbalance

* Performance of regularized variants affected by flat objective
Outlook on future work

¢ Evaluate on other applied problems

> Larger scale
> Less flat

® Multi-node testing

Martin Biel (KTH) November 16, 2018

Final Remarks

Discussion

® L-shaped algorithms outperform solving the extended form directly
e Scalability affected by load imbalance
* Performance of regularized variants affected by flat objective

Outlook on future work

¢ Evaluate on other applied problems

> Larger scale
> Less flat

® Multi-node testing
® Algorithmic improvements

Martin Biel (KTH) November 16, 2018

Final Remarks

Discussion

¢ | -shaped algorithms outperform solving the extended form directly
e Scalability affected by load imbalance
* Performance of regularized variants affected by flat objective

Outlook on future work

¢ Evaluate on other applied problems

> Larger scale
> Less flat

® Multi-node testing
® Algorithmic improvements
¢ Bundling procedures to reduce load imbalance

Martin Biel (KTH) November 16, 2018

Final Remarks

Julia as an alternative to MPI

e Complexity versus implementation effort

> Abstractions for distributed computing are simple and efficient
> High-level features for modeling optimization problems

Martin Biel (KTH) November 16, 2018

Final Remarks

Julia as an alternative to MPI

e Complexity versus implementation effort

> Abstractions for distributed computing are simple and efficient
» High-level features for modeling optimization problems

°* MPI communicators can be used through rp1.j1

Martin Biel (KTH) November 16, 2018

Final Remarks

Julia as an alternative to MPI

e Complexity versus implementation effort

> Abstractions for distributed computing are simple and efficient
» High-level features for modeling optimization problems

°* MPI communicators can be used through rp1.j1
* Prototype on laptop, run the same code on a supercomputer

Martin Biel (KTH) November 16, 2018

Final Remarks

Summary

* Memory-distributed stochastic programs

Martin Biel (KTH) November 16, 2018

https://github.com/martinbiel

Final Remarks

Summary

* Memory-distributed stochastic programs
® |L-shaped algorithms that run in parallel on distributed data

Martin Biel (KTH) November 16, 2018

https://github.com/martinbiel

Final Remarks

Summary

* Memory-distributed stochastic programs
® |L-shaped algorithms that run in parallel on distributed data
e Simple Julia abstractions enable complex parallel algorithms

Martin Biel (KTH) November 16, 2018

https://github.com/martinbiel

Final Remarks

Summary

° Memory-distributed stochastic programs
® |L-shaped algorithms that run in parallel on distributed data

Simple Julia abstractions enable complex parallel algorithms

Framework for formulating and solving stochastic programs

Martin Biel (KTH) November 16, 2018

https://github.com/martinbiel

Final Remarks

Summary

° Memory-distributed stochastic programs

® |L-shaped algorithms that run in parallel on distributed data
Simple Julia abstractions enable complex parallel algorithms
Framework for formulating and solving stochastic programs
The full framework is open-source and freely available on Github

https://github.com/martinbiel

Martin Biel (KTH) November 16, 2018

https://github.com/martinbiel

