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Motivation - Stochastic programming

decision x — observation {(w) — recoursey

* Determine optimal decision X based on predicted outcomes {w;}_
° Numerous industry applications

1

> Power systems
> Finance
> Transportation

¢ Traditional procedure

» Formulate deterministically equivalent optimization problem
> Optimize extended form using standard solvers
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Motivation - Limitations of standard approaches

® Industry-scale applications typically involve 10,000+ scenarios
* Example: 24-hour unit commitment problem [Petra et al (2014)]

> 16,384 scenarios
> 1.95 billion variables and constraints in the extended form
> ~ 1 hour computation time on a Titan supercomputer

Long computation time required to optimize
Memory requirement exceeds the capacity of a single machine

Parallel algorithms that work on distributed data are required
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Contribution

* Framework for formulating and solving stochastic programs
® A collection of L-shaped algorithms

¢ Distributed-memory setting

e Complex functionality using simple abstractions in Julia

Rapidly formulate and solve real-world problems as stochastic programs
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Contribution - Framework

Workers

- Local scenario data ’ ] ’ ]
+ Local JuMP model ‘ B ‘ ]
L Cutsforglobal problem | 5™ ¢ g o o o
Worker 1 Worker N

* Global problem
- Global solver
|+ Worker coordination _| Master .

Run time

T Design time

Domain-specific models Hydromodels.jl
Algebraic modeling language StochasticPrograms.jl

‘ . Scalable distributed solvers LShapedSolvers.jI

Figure: Overview of software framework.
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Background - Stochastic programming

Two-stage linear stochastic program
L T
minimize c' x4+ E,[Q(x, &(w))]

st. Ax=b
x>0

where

Qx, £(w)) = min aly

st T,x+ Wy=h,
y=0
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Two-stage linear stochastic program
L T
minimize c' x4+ E,[Q(x, &(w))]

st. Ax=b
x>0

where

Qx,&(@)) = min Ly

st T,x+ Wy=h,
y=0
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Background - Stochastic programming

Deterministically equivalent form

n

minimize ¢'x + Z n,-q‘.Ty,-

xeRN,y;eRM =
st. Ax=0b
Tix + Wiy = h;,
x>0,y; >0,
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Background - L-shaped algorithm

Cutting-plane algorithms
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Cutting-plane algorithms

X2 X0

X={xeR"|Ax=b,x >0} X4
X = Optimal set

Figure: L-shaped cutting planes
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Master problem

n
minimize CTX—I—ZQ,'
xeRN =

st. Ax=0>b
JQx +0;>q,
x>0

Martin Biel (KTH)

i=1,...

,n

Background - L-shaped algorithm

Subproblems

Qf =ajy

minimize
yieRm
sit. Wy = h; - Tix

yi=0

Q= n,-A,TjT,-
qj = mAlh;
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Background - L-shaped algorithm

Master problem Subproblems
. k _ AT\,
mlyrgelglnlze Q' =q;yi
n
minimize ¢7x + Z 0; st Wy, =h - Tix;
XeRN £
i= yiz0
st. Ax=0b
JQx +0;>q, i=1,...,n
x>0 T
Q; = n,-/\,.JT,-
qj = mAlh;

® One master problem, n subproblems

Theoretical convergence guarantees

® Convergence can be improved through regularization procedures
® Readily extended to operate in parallel on distributed data
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Implementation - StochasticPrograms. ||

* Flexible problem definition

® Deferred model instantiation
® Scenario data injection

° Memory-distributed

® Minimize data passing

> Lightweight sampler objects to generate data
> Lightweight model recipes to generate second stage problems

® Interface to structure-exploiting solver algorithms
® Registered Julia package
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Implementation - Model recipes

@first_stage sp = begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
@objective(model, Min, 100*x; + 150%x,)
@constraint(model, x; + x, <= 120)

end

@second_stage sp = begin
@decision x4 X,
& = scenario
@variable(model, 0 <= y; <= &£.dy)
@variable(model, 0 <= y, <= &£.dy)
@objective(model, Min, &£.q1*yy + £.d2%Y5)
@constraint(model, 6*y; + 10*y, <= 60%x4)
@constraint(model, 8*y; + 5%y, <= 80%x,)
end
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@first_stage sp = begin
@variable(model, x; >= 40)
@variable(model, x, >= 20)
@objective(model, Min, 100*x; + 150%x,)
@constraint(model, x; + x, <= 120)
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X1,X2€R
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Implementation - LShapedSolvers.|l

Collection of L-shaped algorithms
Eight variants in total

> Three different regularization procedures
» Distributed variants of each algorithm
> Numerous tweakable parameters

Trait-based implementation
¢ Interfaces to StochasticPrograms.jl

Martin Biel (KTH) November 16, 2018
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Implementation - Distributed computations in Julia

Distributed computing in Julia revolves around two primitives:

» Remote references: administer which node data resides on
» Remote calls: schedule execution tasks on the distributed data

A channe1 administers data on one process

The channe1 data is readable and writable from all processes.
Calling put on a remote channel involves data passing
Calling fetch on a remote channel involves data fetching

A remote call returns a ruture to the result

A process can wait for data to arrive on a remote reference

Martin Biel (KTH) November 16, 2018



Master node

® Decisions: Master solutions (D)

Implementation - Distributed L-shaped channels

Worker nodes

® jorker: Local subproblems (S)

® CutQueue: Optimality cuts from workers (C) ® TJork: Index into Decisions (‘W)
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Implementation - Distributed L-shaped channels

Master node Worker nodes
® Decisions: Master solutions (D) ® jorker: Local subproblems (S)
® CutQueue: Optimality cuts from workers (C) ® TJork: Index into Decisions (‘W)

® Master determines first stage decisions and shedules worker tasks

* Workers solve subproblems given first stage decisions and generate optimality cuts
The amount of cuts needed to proceed is governed by a asynchronicity parameter x
Timestamps used to synchronize and check convergence
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Implementation - Distributed L-shaped tasks

Master node

function do_work! (master::Master,
cuts: :CutQueue,
decisions: :Decisions,
workers: :Vector{Work})
Xo = initialize(Q)
put! (decisions, 0, xq)
send_work (workers, 1)
while true
wait(cuts)
(t,Q,cut) = take!(cuts)
add_cut! (master, cut)
if added_cuts(master,t) > k*nscenarios(master)
# Enough information to resolve master
X1 = solve(master)
# Send new work to remote nodes
put! (decisions, t+1, X;.4)
send_work (workers, t+1)

end
if added_cuts(master,t) == nscenarios(master) && converged(master)
return :Optimal
end
end
end
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Implementation - Distributed L-shaped tasks

Worker nodes

function do_work! (worker: :Worker,

decisions: :Decisions)
subproblems: :Vector{SubProblem} = fetch(worker)
while true

wait(work)
t::Int = take! (work)
if t == -1
# Worker finished
return
end

x = fetch(decisions,t)
# Update and solve all local subproblems
@sync for subproblem in subproblems
@async begin
update_subproblem! (subproblem,x)
cut = subproblem()
Q = cut(x)
# Send optimality cut to master, with timestamp
# of decision and objective value
put! (cuts, (t,Q,cut))
end
end
end
end

November 16, 20




Worker 1

~Eoo ]

Sy

minimize quys
YieRM
st. Wys=hs—Ts
Ys20
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Master

Implementation - Distributed L-shaped

Worker r

Sr:

L T
minimize G s
st Wys=hs—Ts
¥s20

minimize ¢'x +
XERM

D: D D D st. Ax=b

c: 000 - x20

Figure: Distributed L-shaped procedure
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Implementation - Distributed L-shaped
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Numerical experiments - Day-ahead problem

Optimal order strategies on a deregulated electricity market

From the perspective of a hydropower producer

First stage: Hourly electricity volume bids for the upcoming day
Second stage: Optimize production when market price is known
Market data taken from NordPool, used to sample scenarios
Physical data on hydroelectric plants in river Skelleftedlven

Full model included in #nydrotodels. j1
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Numerical experiments - Convergence

-3.5987e+07
-3.5995e+07
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Figure: L-shaped convergence for a day-ahead problem with 10 price scenarios.
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Computation Time T [s]

59.0

44.3

14.8

0.0

Numerical experiments - Single node

Trust-region

L-shaped

Gurobi

Linearized Regularized
Linearized Level set

10 50 100 200 300
Number of Scenarios N

Figure: Median computation time required to solve day-ahead problems.
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Numerical experiments - Strong scaling

e Day-ahead problem with 1000 price scenarios.
e Results in 2.5 million variables and 1.4 million constraints.
¢ Solving the extended form required 350+ seconds.

(— Distributed TR
—— Distributed L-shaped
—— Distributed LV
111.7 = Distributed RD

(— Distributed TR
—— Distributed L-st
—— Distributed LV
—— Distributed RD

Computation Time T [s]

Parallel Efficiency E [% of linear scaling]

haped

0.0

Number of Cores P

Figure: Computation time.
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Number of Cores P

Figure: Parallel efficiency.
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Numerical experiments - Load imbalance

E Master
B Worker
|—— Mean computation time per iteration

Worker
|[=—— Mean computation time per iteration

Computation Time T [s]
Computation Time T [s]

7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 13 14 15
Iteration i

Iteration i

Figure: 4 workers. Figure: 16 workers.
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Numerical experiments - Load imbalance

Worker
|[=—— Mean computation time per iteration

Computation Time T [s]
Computation Time T [s]

7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 13 14 15
Iteration i

Iteration i

Figure: 4 workers with « = 1. Figure: 4 workers with x« = 0.5.
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Final Remarks

Discussion

¢ | -shaped algorithms outperform solving the extended form directly
e Scalability affected by load imbalance
* Performance of regularized variants affected by flat objective

Outlook on future work

¢ Evaluate on other applied problems

> Larger scale
> Less flat

® Multi-node testing
® Algorithmic improvements
¢ Bundling procedures to reduce load imbalance

Martin Biel (KTH) November 16, 2018



Final Remarks
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Final Remarks

Julia as an alternative to MPI

e Complexity versus implementation effort

> Abstractions for distributed computing are simple and efficient
» High-level features for modeling optimization problems

°* MPI communicators can be used through rp1.j1
* Prototype on laptop, run the same code on a supercomputer
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Summary

* Memory-distributed stochastic programs
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Final Remarks

Summary

° Memory-distributed stochastic programs

® |L-shaped algorithms that run in parallel on distributed data
Simple Julia abstractions enable complex parallel algorithms
Framework for formulating and solving stochastic programs
The full framework is open-source and freely available on Github

https://github.com/martinbiel
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