
KTH ROYAL INSTITUTE

OF TECHNOLOGY

Distributed L-shaped Algorithms in Julia

Martin Biel

KTH - Royal Institute of Technology

November 16, 2018

Motivation - Stochastic programming

decision x

→ observation ξ(ω) → recourse y

• Determine optimal decision x̂ based on predicted outcomes {ωi}
n
i=1

• Numerous industry applications
I Power systems
I Finance
I Transportation

• Traditional procedure
I Formulate deterministically equivalent optimization problem
I Optimize extended form using standard solvers

Martin Biel (KTH) November 16, 2018 2/19

Motivation - Stochastic programming

decision x → observation ξ(ω)

→ recourse y

• Determine optimal decision x̂ based on predicted outcomes {ωi}
n
i=1

• Numerous industry applications
I Power systems
I Finance
I Transportation

• Traditional procedure
I Formulate deterministically equivalent optimization problem
I Optimize extended form using standard solvers

Martin Biel (KTH) November 16, 2018 2/19

Motivation - Stochastic programming

decision x → observation ξ(ω) → recourse y

• Determine optimal decision x̂ based on predicted outcomes {ωi}
n
i=1

• Numerous industry applications
I Power systems
I Finance
I Transportation

• Traditional procedure
I Formulate deterministically equivalent optimization problem
I Optimize extended form using standard solvers

Martin Biel (KTH) November 16, 2018 2/19

Motivation - Stochastic programming

decision x → observation ξ(ω) → recourse y

• Determine optimal decision x̂ based on predicted outcomes {ωi}
n
i=1

• Numerous industry applications
I Power systems
I Finance
I Transportation

• Traditional procedure
I Formulate deterministically equivalent optimization problem
I Optimize extended form using standard solvers

Martin Biel (KTH) November 16, 2018 2/19

Motivation - Stochastic programming

decision x → observation ξ(ω) → recourse y

• Determine optimal decision x̂ based on predicted outcomes {ωi}
n
i=1

• Numerous industry applications
I Power systems
I Finance
I Transportation

• Traditional procedure
I Formulate deterministically equivalent optimization problem
I Optimize extended form using standard solvers

Martin Biel (KTH) November 16, 2018 2/19

Motivation - Stochastic programming

decision x → observation ξ(ω) → recourse y

• Determine optimal decision x̂ based on predicted outcomes {ωi}
n
i=1

• Numerous industry applications
I Power systems
I Finance
I Transportation

• Traditional procedure
I Formulate deterministically equivalent optimization problem
I Optimize extended form using standard solvers

Martin Biel (KTH) November 16, 2018 2/19

Motivation - Limitations of standard approaches

• Industry-scale applications typically involve 10,000+ scenarios

• Example: 24-hour unit commitment problem [Petra et al (2014)]
I 16,384 scenarios
I 1.95 billion variables and constraints in the extended form
I ~ 1 hour computation time on a Titan supercomputer

• Long computation time required to optimize
• Memory requirement exceeds the capacity of a single machine

Parallel algorithms that work on distributed data are required

Martin Biel (KTH) November 16, 2018 3/19

Motivation - Limitations of standard approaches

• Industry-scale applications typically involve 10,000+ scenarios
• Example: 24-hour unit commitment problem [Petra et al (2014)]

I 16,384 scenarios
I 1.95 billion variables and constraints in the extended form
I ~ 1 hour computation time on a Titan supercomputer

• Long computation time required to optimize
• Memory requirement exceeds the capacity of a single machine

Parallel algorithms that work on distributed data are required

Martin Biel (KTH) November 16, 2018 3/19

Motivation - Limitations of standard approaches

• Industry-scale applications typically involve 10,000+ scenarios
• Example: 24-hour unit commitment problem [Petra et al (2014)]

I 16,384 scenarios
I 1.95 billion variables and constraints in the extended form
I ~ 1 hour computation time on a Titan supercomputer

• Long computation time required to optimize

• Memory requirement exceeds the capacity of a single machine

Parallel algorithms that work on distributed data are required

Martin Biel (KTH) November 16, 2018 3/19

Motivation - Limitations of standard approaches

• Industry-scale applications typically involve 10,000+ scenarios
• Example: 24-hour unit commitment problem [Petra et al (2014)]

I 16,384 scenarios
I 1.95 billion variables and constraints in the extended form
I ~ 1 hour computation time on a Titan supercomputer

• Long computation time required to optimize
• Memory requirement exceeds the capacity of a single machine

Parallel algorithms that work on distributed data are required

Martin Biel (KTH) November 16, 2018 3/19

Motivation - Limitations of standard approaches

• Industry-scale applications typically involve 10,000+ scenarios
• Example: 24-hour unit commitment problem [Petra et al (2014)]

I 16,384 scenarios
I 1.95 billion variables and constraints in the extended form
I ~ 1 hour computation time on a Titan supercomputer

• Long computation time required to optimize
• Memory requirement exceeds the capacity of a single machine

Parallel algorithms that work on distributed data are required

Martin Biel (KTH) November 16, 2018 3/19

Contribution

• Framework for formulating and solving stochastic programs

• A collection of L-shaped algorithms
• Distributed-memory setting
• Complex functionality using simple abstractions in Julia

Rapidly formulate and solve real-world problems as stochastic programs

Martin Biel (KTH) November 16, 2018 4/19

Contribution

• Framework for formulating and solving stochastic programs
• A collection of L-shaped algorithms

• Distributed-memory setting
• Complex functionality using simple abstractions in Julia

Rapidly formulate and solve real-world problems as stochastic programs

Martin Biel (KTH) November 16, 2018 4/19

Contribution

• Framework for formulating and solving stochastic programs
• A collection of L-shaped algorithms
• Distributed-memory setting

• Complex functionality using simple abstractions in Julia

Rapidly formulate and solve real-world problems as stochastic programs

Martin Biel (KTH) November 16, 2018 4/19

Contribution

• Framework for formulating and solving stochastic programs
• A collection of L-shaped algorithms
• Distributed-memory setting
• Complex functionality using simple abstractions in Julia

Rapidly formulate and solve real-world problems as stochastic programs

Martin Biel (KTH) November 16, 2018 4/19

Contribution

• Framework for formulating and solving stochastic programs
• A collection of L-shaped algorithms
• Distributed-memory setting
• Complex functionality using simple abstractions in Julia

Rapidly formulate and solve real-world problems as stochastic programs

Martin Biel (KTH) November 16, 2018 4/19

Contribution - Framework

Run time

Worker 1 Worker N

Master

Workers
· Local scenario data
· Local JuMP model
· Cuts for global problem

Master
· Global problem
· Global solver
· Worker coordination

Domain-speci�c models Hydromodels.jl
Algebraic modeling language StochasticPrograms.jl
Scalable distributed solvers LShapedSolvers.jl

Design time

Figure: Overview of software framework.

Martin Biel (KTH) November 16, 2018 4/19

Outline

• Background
• Implementation
• Numerical experiments
• Final remarks

Martin Biel (KTH) November 16, 2018 5/19

Background - Stochastic programming

Two-stage linear stochastic program

minimize
x∈Rn

cT x + Eω[Q(x , ξ(ω))]

s.t. Ax = b

x ≥ 0

where

Q(x , ξ(ω)) = min
y∈Rm

qT
ωy

s.t. Tωx + Wy = hω
y ≥ 0

Martin Biel (KTH) November 16, 2018 6/19

Background - Stochastic programming

Two-stage linear stochastic program

minimize
x∈Rn

cT x + Eω[Q(x , ξ(ω))]

s.t. Ax = b

x ≥ 0

where

Q(x , ξ(ω)) = min
y∈Rm

qT
ωy

s.t. Tωx + Wy = hω
y ≥ 0

Deterministically equivalent form

minimize
x∈Rn ,yi∈R

m
cT x +

n∑
i=1

πiqT
i yi

s.t. Ax = b

Tix + Wiyi = hi , i = 1, . . . ,n

x ≥ 0, yi ≥ 0, i = 1, . . . ,n

Martin Biel (KTH) November 16, 2018 6/19

Background - Stochastic programming

A
T1 W
T2 W
...

. . .

W

Tn

Figure: L-shaped structure.

Martin Biel (KTH) November 16, 2018 6/19

Background - L-shaped algorithm

Cutting-plane algorithms

X = {x ∈ Rn
| Ax = b , x ≥ 0}

X̂ = Optimal set

X̂

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018 6/19

Background - L-shaped algorithm

Cutting-plane algorithms

X = {x ∈ Rn
| Ax = b , x ≥ 0}

X̂ = Optimal set

X̂

x0

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018 6/19

Background - L-shaped algorithm

Cutting-plane algorithms

X = {x ∈ Rn
| Ax = b , x ≥ 0}

X̂ = Optimal set

X̂

x0

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018 6/19

Background - L-shaped algorithm

Cutting-plane algorithms

X = {x ∈ Rn
| Ax = b , x ≥ 0}

X̂ = Optimal set

X̂

x0

x1

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018 6/19

Background - L-shaped algorithm

Cutting-plane algorithms

X = {x ∈ Rn
| Ax = b , x ≥ 0}

X̂ = Optimal set

X̂

x0

x1

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018 6/19

Background - L-shaped algorithm

Cutting-plane algorithms

X = {x ∈ Rn
| Ax = b , x ≥ 0}

X̂ = Optimal set

X̂

x0

x1

x2

Figure: L-shaped cutting planes

Martin Biel (KTH) November 16, 2018 6/19

Background - L-shaped algorithm

Master problem

minimize
x∈Rn

cT x +

n∑
i=1

θi

s.t. Ax = b

∂Qx + θi ≥ q, i = 1, . . . ,n

x ≥ 0

Subproblems

minimize
yi∈Rm

Qk
i = qT

i yi

s.t. Wyi = hi − Tixj

yi ≥ 0

∂Qj = πiλ
T
i,jTi

qj = πiλ
T
i,jhi

• One master problem, n subproblems
• Theoretical convergence guarantees
• Convergence can be improved through regularization procedures
• Readily extended to operate in parallel on distributed data

Martin Biel (KTH) November 16, 2018 7/19

Background - L-shaped algorithm

Master problem

minimize
x∈Rn

cT x +

n∑
i=1

θi

s.t. Ax = b

∂Qx + θi ≥ q, i = 1, . . . ,n

x ≥ 0

Subproblems

minimize
yi∈Rm

Qk
i = qT

i yi

s.t. Wyi = hi − Tixj

yi ≥ 0

∂Qj = πiλ
T
i,jTi

qj = πiλ
T
i,jhi

• One master problem, n subproblems
• Theoretical convergence guarantees
• Convergence can be improved through regularization procedures
• Readily extended to operate in parallel on distributed data

Martin Biel (KTH) November 16, 2018 7/19

Implementation - StochasticPrograms.jl

• Flexible problem definition
• Deferred model instantiation
• Scenario data injection
• Memory-distributed
• Minimize data passing

I Lightweight sampler objects to generate data
I Lightweight model recipes to generate second stage problems

• Interface to structure-exploiting solver algorithms
• Registered Julia package

Martin Biel (KTH) November 16, 2018 8/19

Implementation - Model recipes

� �
@first_stage sp = begin

@variable(model, x1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, x1 + x2 <= 120)

end

@second_stage sp = begin
@decision x1 x2

ξ = scenario
@variable(model, 0 <= y1 <= ξ.d1)
@variable(model, 0 <= y2 <= ξ.d2)
@objective(model, Min, ξ.q1*y1 + ξ.q2*y2)
@constraint(model, 6*y1 + 10*y2 <= 60*x1)
@constraint(model, 8*y1 + 5*y2 <= 80*x2)

end� �
Martin Biel (KTH) November 16, 2018 9/19

Implementation - Model recipes

� �
@first_stage sp = begin

@variable(model, x1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, x1 + x2 <= 120)

end

@second_stage sp = begin
@decision x1 x2

ξ = scenario
@variable(model, 0 <= y1 <= ξ.d1)
@variable(model, 0 <= y2 <= ξ.d2)
@objective(model, Min, ξ.q1*y1 + ξ.q2*y2)
@constraint(model, 6*y1 + 10*y2 <= 60*x1)
@constraint(model, 8*y1 + 5*y2 <= 80*x2)

end� �

JuMP syntax

Martin Biel (KTH) November 16, 2018 9/19

Implementation - Model recipes

� �
@first_stage sp = begin

@variable(model, x1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, x1 + x2 <= 120)

end

@second_stage sp = begin
@decision x1 x2

ξ = scenario
@variable(model, 0 <= y1 <= ξ.d1)
@variable(model, 0 <= y2 <= ξ.d2)
@objective(model, Min, ξ.q1*y1 + ξ.q2*y2)
@constraint(model, 6*y1 + 10*y2 <= 60*x1)
@constraint(model, 8*y1 + 5*y2 <= 80*x2)

end� �

minimize
x1 ,x2∈R

100x1 + 150x2

s.t. x1 + x2 ≤ 120

x1 ≥ 40

x2 ≥ 20

Martin Biel (KTH) November 16, 2018 9/19

Implementation - Model recipes

� �
@first_stage sp = begin

@variable(model, x1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, x1 + x2 <= 120)

end

@second_stage sp = begin
@decision x1 x2

ξ = scenario
@variable(model, 0 <= y1 <= ξ.d1)
@variable(model, 0 <= y2 <= ξ.d2)
@objective(model, Min, ξ.q1*y1 + ξ.q2*y2)
@constraint(model, 6*y1 + 10*y2 <= 60*x1)
@constraint(model, 8*y1 + 5*y2 <= 80*x2)

end� �

minimize
y1 ,y2∈R

q1(ξ) y1 + q2(ξ) y2

s.t. 6y1 + 10y2 ≤ 60 x1

8y1 + 5y2 ≤ 80 x2

0 ≤ y1 ≤ d1(ξ)

0 ≤ y2 ≤ d2(ξ)

Martin Biel (KTH) November 16, 2018 9/19

Implementation - Model recipes

� �
@first_stage sp = begin

@variable(model, x1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, x1 + x2 <= 120)

end

@second_stage sp = begin
@decision x1 x2

ξ = scenario
@variable(model, 0 <= y1 <= ξ.d1)
@variable(model, 0 <= y2 <= ξ.d2)
@objective(model, Min, ξ.q1*y1 + ξ.q2*y2)
@constraint(model, 6*y1 + 10*y2 <= 60*x1)
@constraint(model, 8*y1 + 5*y2 <= 80*x2)

end� �

minimize
y1 ,y2∈R

q1(ξ) y1 + q2(ξ) y2

s.t. 6y1 + 10y2 ≤ 60 x1

8y1 + 5y2 ≤ 80 x2

0 ≤ y1 ≤ d1(ξ)

0 ≤ y2 ≤ d2(ξ)

Martin Biel (KTH) November 16, 2018 9/19

Implementation - Model recipes

� �
@first_stage sp = begin

@variable(model, x1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, x1 + x2 <= 120)

end

@second_stage sp = begin
@decision x1 x2

ξ = scenario
@variable(model, 0 <= y1 <= ξ.d1)
@variable(model, 0 <= y2 <= ξ.d2)
@objective(model, Min, ξ.q1*y1 + ξ.q2*y2)
@constraint(model, 6*y1 + 10*y2 <= 60*x1)
@constraint(model, 8*y1 + 5*y2 <= 80*x2)

end� �

minimize
y1 ,y2∈R

q1(ξ) y1 + q2(ξ) y2

s.t. 6y1 + 10y2 ≤ 60 x1

8y1 + 5y2 ≤ 80 x2

0 ≤ y1 ≤ d1(ξ)

0 ≤ y2 ≤ d2(ξ)

Martin Biel (KTH) November 16, 2018 9/19

Implementation - LShapedSolvers.jl

• Collection of L-shaped algorithms

• Eight variants in total
I Three different regularization procedures
I Distributed variants of each algorithm
I Numerous tweakable parameters

• Trait-based implementation
• Interfaces to StochasticPrograms.jl

Martin Biel (KTH) November 16, 2018 10/19

Implementation - LShapedSolvers.jl

• Collection of L-shaped algorithms
• Eight variants in total

I Three different regularization procedures
I Distributed variants of each algorithm
I Numerous tweakable parameters

• Trait-based implementation
• Interfaces to StochasticPrograms.jl

Martin Biel (KTH) November 16, 2018 10/19

Implementation - LShapedSolvers.jl

• Collection of L-shaped algorithms
• Eight variants in total

I Three different regularization procedures
I Distributed variants of each algorithm
I Numerous tweakable parameters

• Trait-based implementation

• Interfaces to StochasticPrograms.jl

Martin Biel (KTH) November 16, 2018 10/19

Implementation - LShapedSolvers.jl

• Collection of L-shaped algorithms
• Eight variants in total

I Three different regularization procedures
I Distributed variants of each algorithm
I Numerous tweakable parameters

• Trait-based implementation
• Interfaces to StochasticPrograms.jl

Martin Biel (KTH) November 16, 2018 10/19

Implementation - Distributed computations in Julia

• Distributed computing in Julia revolves around two primitives:
I Remote references: administer which node data resides on
I Remote calls: schedule execution tasks on the distributed data

• A Channel administers data on one process
• The Channel data is readable and writable from all processes.
• Calling put on a remote channel involves data passing
• Calling fetch on a remote channel involves data fetching
• A remote call returns a Future to the result
• A process can wait for data to arrive on a remote reference

Martin Biel (KTH) November 16, 2018 11/19

Implementation - Distributed computations in Julia

• Distributed computing in Julia revolves around two primitives:
I Remote references: administer which node data resides on
I Remote calls: schedule execution tasks on the distributed data

• A Channel administers data on one process

• The Channel data is readable and writable from all processes.
• Calling put on a remote channel involves data passing
• Calling fetch on a remote channel involves data fetching
• A remote call returns a Future to the result
• A process can wait for data to arrive on a remote reference

Martin Biel (KTH) November 16, 2018 11/19

Implementation - Distributed computations in Julia

• Distributed computing in Julia revolves around two primitives:
I Remote references: administer which node data resides on
I Remote calls: schedule execution tasks on the distributed data

• A Channel administers data on one process
• The Channel data is readable and writable from all processes.
• Calling put on a remote channel involves data passing

• Calling fetch on a remote channel involves data fetching
• A remote call returns a Future to the result
• A process can wait for data to arrive on a remote reference

Martin Biel (KTH) November 16, 2018 11/19

Implementation - Distributed computations in Julia

• Distributed computing in Julia revolves around two primitives:
I Remote references: administer which node data resides on
I Remote calls: schedule execution tasks on the distributed data

• A Channel administers data on one process
• The Channel data is readable and writable from all processes.
• Calling put on a remote channel involves data passing
• Calling fetch on a remote channel involves data fetching

• A remote call returns a Future to the result
• A process can wait for data to arrive on a remote reference

Martin Biel (KTH) November 16, 2018 11/19

Implementation - Distributed computations in Julia

• Distributed computing in Julia revolves around two primitives:
I Remote references: administer which node data resides on
I Remote calls: schedule execution tasks on the distributed data

• A Channel administers data on one process
• The Channel data is readable and writable from all processes.
• Calling put on a remote channel involves data passing
• Calling fetch on a remote channel involves data fetching
• A remote call returns a Future to the result

• A process can wait for data to arrive on a remote reference

Martin Biel (KTH) November 16, 2018 11/19

Implementation - Distributed computations in Julia

• Distributed computing in Julia revolves around two primitives:
I Remote references: administer which node data resides on
I Remote calls: schedule execution tasks on the distributed data

• A Channel administers data on one process
• The Channel data is readable and writable from all processes.
• Calling put on a remote channel involves data passing
• Calling fetch on a remote channel involves data fetching
• A remote call returns a Future to the result
• A process can wait for data to arrive on a remote reference

Martin Biel (KTH) November 16, 2018 11/19

Implementation - Distributed L-shaped channels

Master node

• Decisions: Master solutions (D)

• CutQueue: Optimality cuts from workers (C)

Worker nodes

• Worker: Local subproblems (S)

• Work: Index into Decisions (W)

• Master determines first stage decisions and shedules worker tasks
• Workers solve subproblems given first stage decisions and generate optimality cuts
• The amount of cuts needed to proceed is governed by a asynchronicity parameter κ
• Timestamps used to synchronize and check convergence

Martin Biel (KTH) November 16, 2018 12/19

Implementation - Distributed L-shaped channels

Master node

• Decisions: Master solutions (D)

• CutQueue: Optimality cuts from workers (C)

Worker nodes

• Worker: Local subproblems (S)

• Work: Index into Decisions (W)

• Master determines first stage decisions and shedules worker tasks
• Workers solve subproblems given first stage decisions and generate optimality cuts
• The amount of cuts needed to proceed is governed by a asynchronicity parameter κ
• Timestamps used to synchronize and check convergence

Martin Biel (KTH) November 16, 2018 12/19

Implementation - Distributed L-shaped tasks
Master node� �
function do_work!(master::Master,

cuts::CutQueue,
decisions::Decisions,
workers::Vector{Work})

x0 = initialize()
put!(decisions, 0, x0)
send_work(workers, 1)
while true

wait(cuts)
(t,Q,cut) = take!(cuts)
add_cut!(master,cut)
if added_cuts(master,t) ≥ κ*nscenarios(master)

Enough information to resolve master
xt+1 = solve(master)
Send new work to remote nodes
put!(decisions, t+1, xt+1)
send_work(workers, t+1)

end
if added_cuts(master,t) == nscenarios(master) && converged(master)

return :Optimal
end

end
end� �
Martin Biel (KTH) November 16, 2018 13/19

Implementation - Distributed L-shaped tasks
Worker nodes� �
function do_work!(worker::Worker,

work::Work,
cuts::CutQueue,
decisions::Decisions)

subproblems::Vector{SubProblem} = fetch(worker)
while true

wait(work)
t::Int = take!(work)
if t == -1

Worker finished
return

end
x = fetch(decisions,t)
Update and solve all local subproblems
@sync for subproblem in subproblems

@async begin
update_subproblem!(subproblem,x)
cut = subproblem()
Q = cut(x)
Send optimality cut to master, with timestamp
of decision and objective value
put!(cuts,(t,Q,cut))

end
end

end
end� �
Martin Biel (KTH) November 16, 2018 14/19

Implementation - Distributed L-shaped

D : · · ·

C : · · ·

minimize
x∈Rn

cT x +

s.t. Ax = b

x ≥ 0

Master

W1 : · · ·

S1 : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Ts

ys ≥ 0

Worker 1

Wr : · · ·

Sr : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Ts

ys ≥ 0

Worker r

· · ·

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018 15/19

Implementation - Distributed L-shaped

D : x0 · · ·

C : · · ·

minimize
x∈Rn

cT x +

s.t. Ax = b

x ≥ 0

Master

W1 : 1 · · ·

S1 : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Ts

ys ≥ 0

Worker 1

Wr : 1 · · ·

Sr : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Ts

ys ≥ 0

Worker r

· · ·

pass pass

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018 15/19

Implementation - Distributed L-shaped

D : x0 · · ·

C : · · ·

minimize
x∈Rn

cT x +

s.t. Ax = b

x ≥ 0

Master

W1 : 1 · · ·

S1 : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx0

ys ≥ 0

Worker 1

Wr : 1 · · ·

Sr : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx0

ys ≥ 0

Worker r

· · ·

fetch fetch

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018 15/19

Implementation - Distributed L-shaped

D : x0 · · ·

C : · · ·

minimize
x∈Rn

cT x +

s.t. Ax = b

x ≥ 0

Master

W1 : 1 · · ·

S1 : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx0

ys ≥ 0

Worker 1

Wr : 1 · · ·

Sr : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx0

ys ≥ 0

Worker r

· · ·

pass

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018 15/19

Implementation - Distributed L-shaped

D : x0 · · ·

C : · · ·

minimize
x∈Rn

cT x +

s.t. Ax = b

x ≥ 0

Master

W1 : 1 · · ·

S1 : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx0

ys ≥ 0

Worker 1

Wr : 1 · · ·

Sr : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx0

ys ≥ 0

Worker r

· · ·

pass

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018 15/19

Implementation - Distributed L-shaped

D : x0 · · ·

C : · · ·

minimize
x∈Rn

cT x +

n∑
i=1

θi

s.t. Ax = b
∂Qx + θi ≥ q, i = 1, . . . ,n
x ≥ 0

Master

W1 : 1 · · ·

S1 : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx0

ys ≥ 0

Worker 1

Wr : 1 · · ·

Sr : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx0

ys ≥ 0

Worker r

· · ·

pass

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018 15/19

Implementation - Distributed L-shaped

D : x0 x1 · · ·

C : · · ·

minimize
x∈Rn

cT x +

n∑
i=1

θi

s.t. Ax = b
∂Qx + θi ≥ q, i = 1, . . . ,n
x ≥ 0

Master

W1 : 1 2 · · ·

S1 : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx0

ys ≥ 0

Worker 1

Wr : 1 2 · · ·

Sr : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx0

ys ≥ 0

Worker r

· · ·

pass

pass pass

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018 15/19

Implementation - Distributed L-shaped

D : x0 x1 · · ·

C : · · ·

minimize
x∈Rn

cT x +

n∑
i=1

θi

s.t. Ax = b
∂Qx + θi ≥ q, i = 1, . . . ,n
x ≥ 0

Master

W1 : 1 2 · · ·

S1 : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx1

ys ≥ 0

Worker 1

Wr : 1 2 · · ·

Sr : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx0

ys ≥ 0

Worker r

· · ·

passfetch

|Q −Θ| ≤ τ(ε+ |Q |)?

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018 15/19

Implementation - Distributed L-shaped

D : x0 x1 · · ·

C : · · ·

minimize
x∈Rn

cT x +

n∑
i=1

θi

s.t. Ax = b
∂Qx + θi ≥ q, i = 1, . . . ,n
x ≥ 0

Master

W1 : 1 2 · · ·

S1 : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx1

ys ≥ 0

Worker 1

Wr : 1 2 · · ·

Sr : minimize
yi∈Rm

qT
s ys

s.t. Wys = hs − Tsx1

ys ≥ 0

Worker r

· · ·

pass fetch

Figure: Distributed L-shaped procedure

Martin Biel (KTH) November 16, 2018 15/19

Numerical experiments - Day-ahead problem

• Optimal order strategies on a deregulated electricity market
• From the perspective of a hydropower producer
• First stage: Hourly electricity volume bids for the upcoming day
• Second stage: Optimize production when market price is known
• Market data taken from NordPool, used to sample scenarios
• Physical data on hydroelectric plants in river Skellefteälven
• Full model included in HydroModels.jl

Martin Biel (KTH) November 16, 2018 16/19

Numerical experiments - Convergence

1.0 6.0 11.0 16.0 21.0 26.0 31.0 36.0 41.0 46.0 51.0 56.0 61.0
Iteration

-3.6058e+07

-3.6051e+07

-3.6044e+07

-3.6037e+07

-3.6030e+07

-3.6023e+07

-3.6016e+07

-3.6009e+07

-3.6002e+07

-3.5995e+07

-3.5987e+07

Q
Q

Figure: L-shaped convergence for a day-ahead problem with 10 price scenarios.

Martin Biel (KTH) November 16, 2018 16/19

Numerical experiments - Single node

10 50 100 200 300
Number of Scenarios N

0.0

14.8

29.5

44.3

59.0

Co
m

pu
ta

tio
n

Ti
m

e
T

[s
]

Trust-region
L-shaped
Gurobi
Linearized Regularized
Linearized Level set

Figure: Median computation time required to solve day-ahead problems.

Martin Biel (KTH) November 16, 2018 16/19

Numerical experiments - Strong scaling

• Day-ahead problem with 1000 price scenarios.
• Results in 2.5 million variables and 1.4 million constraints.
• Solving the extended form required 350+ seconds.

1 2 4 8 16
Number of Cores P

0.0

37.2

74.5

111.7

Co
m

pu
ta

tio
n

Ti
m

e
T

[s
]

Distributed TR
Distributed L-shaped
Distributed LV
Distributed RD

Figure: Computation time.

1 2 4 8 16
Number of Cores P

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Pa
ra

lle
l E

ffi
cie

nc
y

E
[%

 o
f l

in
ea

r s
ca

lin
g]

Distributed TR
Distributed L-shaped
Distributed LV
Distributed RD

Figure: Parallel efficiency.

Martin Biel (KTH) November 16, 2018 16/19

Numerical experiments - Load imbalance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration i

0

1

2

3

4

5

Co
m

pu
ta

tio
n

Ti
m

e
T

[s
]

Master
Worker
Mean computation time per iteration

Figure: 4 workers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration i

0

1

2

3

4

5

Co
m

pu
ta

tio
n

Ti
m

e
T

[s
]

Master
Worker
Mean computation time per iteration

Figure: 16 workers.

Martin Biel (KTH) November 16, 2018 16/19

Numerical experiments - Load imbalance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration i

0

1

2

3

4

5

Co
m

pu
ta

tio
n

Ti
m

e
T

[s
]

Master
Worker
Mean computation time per iteration

Figure: 4 workers with κ = 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration i

0

1

2

3

4

5

Co
m

pu
ta

tio
n

Ti
m

e
T

[s
]

Master
Worker
Mean computation time per iteration

Figure: 4 workers with κ = 0.5.

Martin Biel (KTH) November 16, 2018 16/19

Final Remarks

Discussion
• L-shaped algorithms outperform solving the extended form directly

• Scalability affected by load imbalance
• Performance of regularized variants affected by flat objective

Outlook on future work
• Evaluate on other applied problems

I Larger scale
I Less flat

• Multi-node testing
• Algorithmic improvements
• Bundling procedures to reduce load imbalance

Martin Biel (KTH) November 16, 2018 17/19

Final Remarks

Discussion
• L-shaped algorithms outperform solving the extended form directly
• Scalability affected by load imbalance

• Performance of regularized variants affected by flat objective

Outlook on future work
• Evaluate on other applied problems

I Larger scale
I Less flat

• Multi-node testing
• Algorithmic improvements
• Bundling procedures to reduce load imbalance

Martin Biel (KTH) November 16, 2018 17/19

Final Remarks

Discussion
• L-shaped algorithms outperform solving the extended form directly
• Scalability affected by load imbalance
• Performance of regularized variants affected by flat objective

Outlook on future work
• Evaluate on other applied problems

I Larger scale
I Less flat

• Multi-node testing
• Algorithmic improvements
• Bundling procedures to reduce load imbalance

Martin Biel (KTH) November 16, 2018 17/19

Final Remarks

Discussion
• L-shaped algorithms outperform solving the extended form directly
• Scalability affected by load imbalance
• Performance of regularized variants affected by flat objective

Outlook on future work
• Evaluate on other applied problems

I Larger scale
I Less flat

• Multi-node testing
• Algorithmic improvements
• Bundling procedures to reduce load imbalance

Martin Biel (KTH) November 16, 2018 17/19

Final Remarks

Discussion
• L-shaped algorithms outperform solving the extended form directly
• Scalability affected by load imbalance
• Performance of regularized variants affected by flat objective

Outlook on future work
• Evaluate on other applied problems

I Larger scale
I Less flat

• Multi-node testing

• Algorithmic improvements
• Bundling procedures to reduce load imbalance

Martin Biel (KTH) November 16, 2018 17/19

Final Remarks

Discussion
• L-shaped algorithms outperform solving the extended form directly
• Scalability affected by load imbalance
• Performance of regularized variants affected by flat objective

Outlook on future work
• Evaluate on other applied problems

I Larger scale
I Less flat

• Multi-node testing
• Algorithmic improvements

• Bundling procedures to reduce load imbalance

Martin Biel (KTH) November 16, 2018 17/19

Final Remarks

Discussion
• L-shaped algorithms outperform solving the extended form directly
• Scalability affected by load imbalance
• Performance of regularized variants affected by flat objective

Outlook on future work
• Evaluate on other applied problems

I Larger scale
I Less flat

• Multi-node testing
• Algorithmic improvements
• Bundling procedures to reduce load imbalance

Martin Biel (KTH) November 16, 2018 17/19

Final Remarks

Julia as an alternative to MPI

• Complexity versus implementation effort
I Abstractions for distributed computing are simple and efficient
I High-level features for modeling optimization problems

• MPI communicators can be used through MPI.jl
• Prototype on laptop, run the same code on a supercomputer

Martin Biel (KTH) November 16, 2018 18/19

Final Remarks

Julia as an alternative to MPI

• Complexity versus implementation effort
I Abstractions for distributed computing are simple and efficient
I High-level features for modeling optimization problems

• MPI communicators can be used through MPI.jl

• Prototype on laptop, run the same code on a supercomputer

Martin Biel (KTH) November 16, 2018 18/19

Final Remarks

Julia as an alternative to MPI

• Complexity versus implementation effort
I Abstractions for distributed computing are simple and efficient
I High-level features for modeling optimization problems

• MPI communicators can be used through MPI.jl
• Prototype on laptop, run the same code on a supercomputer

Martin Biel (KTH) November 16, 2018 18/19

Final Remarks

Summary

• Memory-distributed stochastic programs

• L-shaped algorithms that run in parallel on distributed data
• Simple Julia abstractions enable complex parallel algorithms
• Framework for formulating and solving stochastic programs
• The full framework is open-source and freely available on Github

https://github.com/martinbiel

Martin Biel (KTH) November 16, 2018 19/19

https://github.com/martinbiel

Final Remarks

Summary

• Memory-distributed stochastic programs
• L-shaped algorithms that run in parallel on distributed data

• Simple Julia abstractions enable complex parallel algorithms
• Framework for formulating and solving stochastic programs
• The full framework is open-source and freely available on Github

https://github.com/martinbiel

Martin Biel (KTH) November 16, 2018 19/19

https://github.com/martinbiel

Final Remarks

Summary

• Memory-distributed stochastic programs
• L-shaped algorithms that run in parallel on distributed data
• Simple Julia abstractions enable complex parallel algorithms

• Framework for formulating and solving stochastic programs
• The full framework is open-source and freely available on Github

https://github.com/martinbiel

Martin Biel (KTH) November 16, 2018 19/19

https://github.com/martinbiel

Final Remarks

Summary

• Memory-distributed stochastic programs
• L-shaped algorithms that run in parallel on distributed data
• Simple Julia abstractions enable complex parallel algorithms
• Framework for formulating and solving stochastic programs

• The full framework is open-source and freely available on Github

https://github.com/martinbiel

Martin Biel (KTH) November 16, 2018 19/19

https://github.com/martinbiel

Final Remarks

Summary

• Memory-distributed stochastic programs
• L-shaped algorithms that run in parallel on distributed data
• Simple Julia abstractions enable complex parallel algorithms
• Framework for formulating and solving stochastic programs
• The full framework is open-source and freely available on Github

https://github.com/martinbiel

Martin Biel (KTH) November 16, 2018 19/19

https://github.com/martinbiel

