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Contribution
Motivation

• Determine optimal order strategies in a deregulated electricity market

• Hydroelectric power production
• Spatial dependence
• Temporal dependence
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Contribution
• Complete modeling procedure

I Data gathering
I Forecast generation
I Model formulation
I Optimization
I Result visualization

Martin Biel. Optimal day-ahead or-
ders using stochastic programming
and noise-driven RNNs.
arXiv preprint arXiv:1910.04510, 2019
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Forecast generation

• Noise-driven recurrent neural network

• Trained on price data and inflow data separately
• Seasonality modeled through separate inputs to the network
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Figure: Initializer network in the price
forecaster.
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Figure: Sequence generation network in
the price forecaster.
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Forecast generation
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Figure: Historical electricity price curves in January and electricity price curves generated using
the RNN forecaster in the same period.
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Forecast generation
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Figure: Daily electricity price curves predicted by the RNN forecaster in every month of the year.
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Model formulation

• StochasticPrograms.jl: framework for stochastic programming

• Formulate, solve and analyze stochastic models
• Distributed-memory implementation for large-scale models
• Efficient implementations of structure-exploiting algorithms
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Model formulation - StochasticPrograms.jl

� �
@stochastic_model simple begin

@stage 1 begin
@decision(simple, x1 >= 40)
@decision(simple, x2 >= 20)
@objective(simple, Min, 100*x1 + 150*x2)
@constraint(simple, x1 + x2 <= 120)

end
@stage 2 begin

@uncertain q1 q2 d1 d2
@recourse(simple, 0 <= y1 <= d1)
@recourse(simple, 0 <= y2 <= d2)
@objective(simple, Max, q1*y1 + q2*y2)
@constraint(simple, 6*y1 + 10*y2 <= 60*x1)
@constraint(simple, 8*y1 + 5*y2 <= 80*x2)

end
end� �
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minimize
x1,x2∈R

100x1 + 150x2

subject to x1 + x2 ≤ 120
x1 ≥ 40
x2 ≥ 20
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Model formulation - StochasticPrograms.jl

� �
@stochastic_model simple begin

@stage 1 begin
@decision(simple, x1 >= 40)
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end
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max
y1,y2∈R

q1(ξ) y1 + q2(ξ) y2

s.t. 6y1 + 10y2 ≤ 60 x1
8y1 + 5y2 ≤ 80 x2

0 ≤ y1 ≤ d1(ξ)

0 ≤ y2 ≤ d2(ξ)
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Model formulation - Day-ahead problem

Full model details:

• Preprint: Martin Biel. Optimal day-ahead orders using stochastic
programming and noise-driven RNNs.
arXiv preprint arXiv:1910.04510, 2019

• Github: github.com/martinbiel/HydroModels
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Optimization

• Generate tight confidence intervals using sample average approximation

• Ensure a statistically significant value of the stochastic solution
• Sampled instances of ~2000 scenarios required to reach this bound

I ~5 million variables
I ~3.3 million constraints

• Leverage distributed capabilities of StochasticPrograms.jl
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Results
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Figure: Seasonal variation of day-ahead VRP and EEV, including 95% confidence intervals.

Martin Biel (KTH) June 29, 2021 5



Final remarks
Summary

• Large-scale day-ahead problems solved on a compute cluster

• Noise-driven recurrent neural networks to sample scenarios
• Tight confidence intervals from SAA
• Statistically significant VSS
• Proof of concept for large-scale models in StochasticPrograms.jl

Further information
• Contact: mbiel@kth.se
• Github: github.com/martinbiel/StochasticPrograms.jl
• Full paper
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