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1 Preliminaries
Definition 1. An -polyhedron in ℝn is the intersection of a finite set of closed half-
spaces

 = {x ∈ ℝn
|Hx ≤ ℎ}

Definition 2. An -polytope in ℝn is an -polyhedron that does not contain any ray
{x + ty | x, y ∈  , t ≥ 0}.
Definition 3. Given an -polyhedron  = {x ∈ ℝn

|Hx ≤ ℎ} and a linear mapping
x→ Ax, the composition of  and A is given by

◦A = {x ∈ ℝn
|HAx ≤ ℎ}

and the composition of A and  is given by
A◦ = {y ∈ ℝm

| ∃x ∈  s.t. y = Ax}

In computations, it is probable that one encounters intermediate polyhedra with
redundant constraints. Consider a polyhedron

 = {x ∈ ℝn
| aTi x ≤ bi, i = 1,… , m}

arising in some computation. For repeated computations to remain tractable it is important
to reduce  to a minimal representation ̃ by removing all redundant constraints. This
can be done by applying Algorithm 1.
Algorithm 1 Computation of minimal representation of 

for i ∈  = 1, 2,… , m do
� ← max aTi x s.t. a

T
j x ≤ bj , j ∈  ⧵ {i}

if � ≤ bi thenRemove i from 
end if

end for
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Another important computational tool is elimination. Consider polyhedra of the form
 = {x ∈ ℝn, y ∈ ℝ | aTi x + biy ≤ ci, i = 1,… , m}

The projection onto the x-space is given by
projx() = {x ∈ ℝn

| ∃y ∈ ℝ s.t. aTi x + biy ≤ ci, i = 1,… , m}

The projected polyhedra can be obtained through for example Fourier-Motzkin elimina-
tion, as shown in Algorithm 2
Algorithm 2 Computation of projected polyhedron projx() (Fourier-Motzkin)
projx()← ∅
 ← ∅
 ← ∅
for i ∈  = 1, 2,… , m do

if bi > 0 then
Ui(x)←

1
bi
(ci − aTi x)

ADDUPPER( ,i(x))
else if bi < 0 then

Li(x)←
1
bi
(ci − aTi x)

ADDLOWER(,Li(x))
else if bi = 0 thenADDHALFSPACE(projx(),aTi x ≤ ci)
end if

end for
for Li(x) ∈  do

for Uj(x) ∈  do
ADDHALFSPACE(projx(),Li(x) − Uj(x) ≤ 0)

end for
end for

Computational tools based on these techniques are available in many high-level
languages. To name a few:

• MPT3 in Matlab
• Polyhedra.jl in Julia

2 Autonomous Linear Systems
We begin by considering autonomous linear systems under state constraints, i.e.

xt+1 = Axt, xt ∈ 
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where  ⊆ ℝn is some polyhedral set.
Definition 4. Given a set  ⊂ ℝn, the predecessor set Pre () under xt+1 = Axt is givenby

Pre () = {x ∈ ℝn
| Ax ∈ }

In other words, if xt ∈ Pre () then xt+1 ∈  . In other words, Pre (S) is the set of
states which evolve in the set  in one time step. It is readily verified that Pre () = ◦A,
as shown in the following example.
Example 2.1. Consider the following linear system

xt+1 =
(

0.5 0
1 −0.5

)

xt (1)

under the state constraints

xt ∈  =
{

x ∈ ℝ2
|

|

|

|

|

[

−10
−10

]

≤ x ≤
[

10
10

]}

, ∀t ≥ 0

Represent  as an -polytope:
 = {x ∈ ℝ2

|Hx ≤ ℎ}

by introducing

H =

⎡

⎢

⎢

⎢

⎣

1 0
0 1
−1 0
0 −1

⎤

⎥

⎥

⎥

⎦

, ℎ =

⎡

⎢

⎢

⎢

⎣

10
10
10
10

⎤

⎥

⎥

⎥

⎦

Now, it holds that
Pre () = {xt ∈ ℝ2

| xt+1 ∈ }
= {xt ∈ ℝ2

|Hxt+1 ≤ ℎ}
= {x ∈ ℝ2

|HAx ≤ ℎ}

and

HA =

⎡

⎢

⎢

⎢

⎣

0.5 0
1 −0.5

−0.5 0
−1 0.5

⎤

⎥

⎥

⎥

⎦

The resulting set is shown together with  in Figure 1.
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Figure 1:  and Pre () under the linear dynamics (1).

Notably, some states in  will evolve outside  in one time step.
Likewise, we can define the set of states that S can evolve to in one time step.

Definition 5. Given a set  ⊂ ℝn, the reachable set Reach () under xt+1 = Axt is givenby
Reach () = {x ∈ ℝn

| ∃x0 ∈  s.t. x = Ax0}

In other words, if xt ∈  then xt+1 ∈ Reach (). Note, that Pre () and Reach ()are always defined in terms of some given dynamics.
We can now introduce the concept of invariance.

Definition 6. A set  ⊆  is positive invariant under xt+1 = Axt if
xt ∈  ⇒ xk ∈  ∀k ≥ t

In other words, if the state xt of the system enters  at time t, it will remain in 
for all future time steps. This concept has imporant consequences for control design.
For example, if the system state enters some positive invariant set  ⊆  , then the state
constraints xt ∈  will never be violated.
Example 2.2. Consider again the linear system

xt+1 =
(

0.5 0
1 −0.5

)

xt
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and the constraint set  = {x ∈ ℝ2
| x2 − x1 = 0}. Is  positive invariant?

Assume xt ∈  . It follows that
x2(t) − x1(t) = 0

Now,
x2(t + 1) − x1(t + 1) = x1(t) − 0.5x2(t) − 0.5x1(t)

= −0.5(x2(t) − x1(t))
= 0

Hence, it follows by induction that xt ∈  ⇒ xt+1 ∈  . In conclusion,  is positive
invariant under xt+1 ∈ Axt.

Now, we establish and prove a geometric condition for invariance.
Theorem 2.1. A set  ⊆  is positive invariant under xt+1 = Axt if and only if

 ⊆ Pre ()

Proof. First, assume that  ⊈ Pre (). It follows that ∃x̄ ∈  such that x̄ ∉ Pre ().
Hence, it holds that Ax̄ ∉  so that  is not positive invariant. This proves necessity.
Next, assume that is not positive invariant, so that ∃x̄ ∈  such thatAx̄ ∉ . It follows
that x̄ ∉ Pre (). Hence,  ⊈ Pre (). This proves sufficiency. ■

Example 2.3. Consider again Example 2.1. It is readily verified in Figure 1 that  ⊈
Pre (). Hence,  is not positive invariant under the given dynamics. For example, the
state x0 =

(

10 −10
) evolves into x1 =

(

5 15
)

∉  .
An equivalent condition that we will see is more practical for computations follows

immediately.
Corollary 2.2. A set  ⊆  is positive invariant under xt+1 = Axt if and only if

Pre () ∩  = 

Now, there may exist multiple positive invariant subsets of  . Hence, it is not
immediately clear if the system will remain in  for a given starting state x0 ∈  . This
issue is alleviated by the following definition.
Definition 7. ∞() ⊆  is the maximal positive invariant set under xt+1 = Axt if

• ∞() is positive invariant under xt+1 = Axt
5



•  ⊆  positive invariant under xt+1 = Axt ⇒  ⊆ ∞()

Hence, a system state trajectory xt is only guaranteed to remain in the constraint set
 if x0 ∈ ∞(). Given some  , Corollary 3.4 can be used to formulate an efficient
algorithm for computing the corresponding maximal positive invariant set ∞().
Algorithm 3 Computation of ∞()
Ω0 ← 
for j = 1, 2,… do

Ωj ← Pre
(

Ωj−1
)

∩ Ωj−1
if Ωj = Ωj−1 then

Ω∞()← Ωj
return Ω∞()

end if
end for

If Algorithm 3 terminates at some iteration k, then Corollary 3.4 implies that Ωk =
∞(). Note, that if Ωk = ∅ at any iteration k, then it follows that ∞() = ∅.
Example 2.4. Consider again Example 2.1. It turns out that ∞() is obtained after asingle step of Algorithm 3. In other words, Pre () ∩  is the largest positive invariant
set contained in  . ∞() is shown in Figure 2.
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Figure 2:  and ∞() under the linear dynamics (1).
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3 Controlled Linear Systems
Now, we consider systems subjected to external inputs, under both state and input con-
straints, i.e.

xt+1 = Axt + But, xt ∈  , ut ∈ 

where  ⊆ ℝn and ⊆ ℝm are polyhedral sets. We can now define useful sets analogous
to the autonomous case.
Definition 8. Given a set  ⊂ ℝn, the one-step controllable set C (; ) under xt+1 =
Axt + But is given by

C (; ) = {x ∈ ℝn
| ∃u ∈  s.t. Ax + Bu ∈ }

Example 3.1. Consider the following linear system

xt+1 =
(

1.5 0
1 −1.5

)

xt +
(

1
0

)

ut (2)

subject to the input and state constraints

xt ∈  =
{

x ∈ ℝ2
|

|

|

|

|

[

−10
−10

]

≤ x ≤
[

10
10

]}

, ∀t ≥ 0

ut ∈  = {u ∈ ℝ | −5 ≤ u ≤ 5}, ∀t ≥ 0

Represent  and  as -polytopes:

 = {x ∈ ℝ2
|Hx ≤ ℎ} =

⎧

⎪

⎨

⎪

⎩

x

|

|

|

|

|

|

|

|

|

⎡

⎢

⎢

⎢

⎣

1 0
0 1
−1 0
0 −1

⎤

⎥

⎥

⎥

⎦

x ≤
⎡

⎢

⎢

⎢

⎣

10
10
10
10

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

 = {u ∈ ℝ |Huu ≤ ℎu} =
{

u ∈ ℝ
|

|

|

|

|

(

1
−1

)

u ≤
(

5
5

)}

Now, it holds that
C ( ; ) = {xt ∈ ℝ2

| ∃ut ∈  s.t. xt+1 ∈ }
= {xt ∈ ℝ2

| ut ∈  s.t. Hxt+1 ≤ ℎ}

=
{

x ∈ ℝ2, u ∈ ℝ
|

|

|

|

|

(

HA HB
0 Hu

)(

x
u

)

≤
(

ℎ
ℎu

)}
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Through Fourier-Motzkin elimination, u can be eliminated to derive half-spaces which
define C ( ; ) in the state-space.

C ( ; ) =

⎧

⎪

⎨

⎪

⎩

x ∈ ℝ2

|

|

|

|

|

|

|

|

|

⎛

⎜

⎜

⎜

⎝

1 0
1 −1.5
1 0
1 −1.5

⎞

⎟

⎟

⎟

⎠

x ≤
⎛

⎜

⎜

⎜

⎝

−10
10
10
−10

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

The constrained state space  and the one-step controllable set C ( ; ) are shown in
Figure 3.
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Figure 3:  and C ( ; ) under the linear dynamics (3)

Notably, some states in  will evolve outside  in one time step, irregardless of any
admissible control input applied to the system.

Again, we can define the analogous set of states that  can be driven to in one time
step.
Definition 9. Given a set  ⊂ ℝn, the one-step reachable set R (S; ) under xt+1 =
Axt + But is given by

R (; ) = {x ∈ ℝn
| ∃x0 ∈  , u0 ∈  s.t. x = Ax0 + Bu0}

Next, the concept of control invariance is introduced.
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Definition 10. A set  ⊆  is controlled invariant under xt+1 = Axt + But, ut ∈  if
xt ∈  ⇒ ∃{uk}∞k=t ∈  s.t. xk ∈ , ∀k ≥ t

In other words, if the system state enters  at time t, it can be kept in  through some
admissible control sequence {uk}∞k=t ∈  . Now, lets derive a geometric condition for
control invariance, as in the autonomous case.
Theorem 3.1. A set  ⊆  is controlled invariant under xt+1 = Axt + But, ut ∈  if
and only if

 ⊆ C (; )

Proof. First, assume that  ⊈ C (; ). It follows that ∃x̄ ∈  such that x̄ ∉ C (; ).
Therefore, there is no u ∈  such that Ax̄+Bu ∈ . Hence,  is not controlled invariant.
This proves necessity. Next, assume that  is not controlled invariant, so that there exists
some state trajectory {xt}∞t=0 where for some t it holds that xt ∈  but xt+1 ∉ . In other
words,Axt+Bu ∉  for any u ∈  . It follows that xt ∉ C (; ). Hence,  ⊈ C (; ).
This proves sufficiency. ■

Example 3.2. Consider again Example 3.1. It is readily verified in Figure 3 that  ⊈
C ( ; ). Hence,  is not control invariant under the given dynamics. For instance, the
state x = (

5 −10
) will have x2 = 20 in the next time step irregardless of any feasible

control input u.
An interesting implication of control invariance is given in the next result.

Theorem 3.2.  ⊆  is controlled invariant under xt+1 = Axt+But, ut ∈  , if and only
if there exists anm×nmatrix F such that  is positive invariant under xt+1 = (A+BF )xt
and

 ⊆  ◦F

Proof. (The following proof is only valid when  and  are polytopes. The extension to
polyhedrons is trivial, but left out for brevity.)

Let c1,… , cr denote the vertex points of  so that every x ∈  can be represented
by a convex combination x = ∑r

i=1 �ici,
∑r

i=1 �i = 1. Now, assume that  is controlled
invariant under xt+1 = Axt + But, ut ∈  . It follows that for every ci, there exists a
ui ∈  such that

Aci + Bui ∈ 

Introduce an m × n matrix F such that
Fci = ui, i = 1,… , n
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This is possible since r ≤ n, but F is not unique if r < n. Now, for any x ∈ , it holds
that

(A + BF )x = (A + BF )
r
∑

i=1
�ici

=
r
∑

i=1
�i(Aci + B(Fci))

=
r
∑

i=1
�i(Aci + Bui) ∈ 

since Aci + Bui ∈ , i = 1,… , r by assumption and polytopes are closed under convex
combinations. Hence, x ∈ Pre () under xt+1 = (A + BF )xt so that  ⊆ Pre (). By
Theorem 2.1,  is positive invariant under xt+1 = (A + BF )xt. Moreover, for any x ∈ 
it holds that

Fx = F
r
∑

i=1
�ici

=
r
∑

i=1
�iui ∈ 

since ui ∈  , i = 1,… , r and polytopes are closed under convex combinations. Hence,
 ⊆  ◦F

This proves necessity. Next, assume that there exists an m × n matrix F such that  is
positive invariant under xt+1 = (A + BF )xt and  ⊆  ◦F . It follows that for all x ∈ 
it holds that

Ax + BFx ∈ 

Moreoever, u ∶= Fx ∈  . Hence, x ∈ C (; ) under xt+1 = Axt+But, ut ∈  so that
 ⊆ C (; ). By Theorem 3.1,  is controlled invariant under xt+1 = Axt+But, ut ∈  .
This proves sufficiency. ■

The following alternative result can sometimes be more useful.
Theorem 3.3.  is controlled invariant under xt+1 = Axt + But if and only if

Reach () ⊆  + B◦

where Reach () is under xt+1 = Axt.
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Proof. (Again, the proof is only valid when  and  are polytopes.) Assume  is
controlled invariant. Take any x ∈  and consider y = Ax + Bu. As  is controlled
invariant there exists some u ∈  so that y ∈ . It follows that

Ax = y − Bu

Now, Ax ∈ Reach () under xt+1 = Axt, y ∈  and Bu ∈ B◦ (since u ∈  ). As
x was chosen arbitrarily from , it follows that Reach () ⊆  + B◦ . This proves
necessity. Next, assume that Reach () ⊆  +B◦ and let c1,… , cr be the vertex pointsfor . It follows that

Aci = c̃i + Bui, i = 1,… , r

for some c̃i ∈  and ui ∈  . Now, introduce an m × n matrix F for which
Fci = −ui, i = 1,… , r

(Note, that F is not unique if r < n.) It follows that
Aci = c̃i − BFci, i = 1,… , r

⇔ (A + BF )ci = c̃i ∈ , i = 1,… , r
⇒  ⊆ Pre ()

under xt+1 = (A + BF )xt. Moreover, for any x ∈  it holds that

Fx = F
r
∑

i=1
�ici

=
r
∑

i=1
�iui ∈ 

since ui ∈  , i = 1,… , r and polytopes are closed under convex combinations. Hence,
 ⊆  ◦F

By Theorem 3.2,  is controlled invariant. This proves sufficiency. ■

For the special case when  = ℝm, the following corollary is more useful to work
with.
Corollary 3.4. If  = ℝm, then  is controlled invariant under xt+1 = Axt +But if and
only if

Reach () ⊆  + Im B

where Reach () is under xt+1 = Axt.
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Example 3.3. Consider the linear system

xt+1 =
(

0.5 0
1 −0.5

)

xt +
[

1
−5

]

ut ∶= Axt + But

and the constraint set  = {x ∈ ℝ2
| x1 + x2 = 0}. It is readily verified that  is not

positive invariant under xt+1 = Axt. Is  controlled invariant?

First, note that  is spanned by v = [

−1 1
]T , and consider

Av =
[

0.5 0
1 −0.5

] [

−1
1

]

=
[

−0.5
−1.5

]

=
[

−1
1

]

+ 0.5
[

1
−5

]

∈  + Im B

Hence, by Theorem 3.3, is controlled invariant. A feedback matrix F can be determined
from Fv = −u. For example, take F =

[

0.5 0
]. It follows that any x0 ∈  will remain

in  under the feedback law u = Fx.
The analogue to the maximal positive invariant set is another useful construct.

Definition 11. ∞( ; ) ⊆  is the maximal control invariant set under xt+1 = Axt +
But if

• ∞( ; ) is control invariant under xt+1 = Axt + But, ut ∈  .
•  ⊆  control invariant under xt+1 = Axt + But, ut ∈  ⇒  ⊆ ∞( ; ).
An immediate consequence is that ∀x0 ∈ ∞( ; ), ∃{ut}∞t=0 ∈  such that xt ∈ 

for all t ≥ 0. In other words, ∞( ; ) is the set of starting states where the state
trajectories can be kept in  through admissible control sequences. An algorithm for
computing ∞( ; ) based on Theorem 3.1 is given in Algorithm 4.
Algorithm 4 Computation of ∞( ; )
Ω0 ← 
for j = 1, 2,… do

Ωj ← C (Ωj−1; ) ∩ Ωj−1
if Ωj = Ωj−1 then

∞( ; )← Ωj
return ∞( ; )

end if
end for
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Example 3.4. Consider again Example 3.1. ∞( ; ) is obtained after 33 steps of
Algorithm 4. ∞ is shown in Figure 4.
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Figure 4:  and ∞( ; ) under the linear dynamics (3).

So far, the main concern has been maintaining the state constraints. However, we are
typically concerned with driving the system to some target set. Some more definitions
are required to extend the framework to these types of problems.
Definition 12. For a given target set  ⊆  , the N-step controllable set N ( ; )
under xt+1 = Axt + But, ut ∈  is defined recursively as

j( ; ) = C (j−1( ); ) ∩  , j = 1,… , N
0( ; ) = 

where C (; ) is under xt+1 = Axt + But, ut ∈  .
In other words, if x0 ∈ N ( ; ) then the system can be driven from x0 to  inN

steps. Typically, we want the target set to be controlled invariant so that the state can
be kept there. The following definition is stated in terms of control invariant sets, and
removes the dependency onN .
Definition 13. For a given control invariant set  ⊆  , the maximal stabilizable set
∞(; ) under xt+1 = Axt + But, ut ∈  is defined by

• N (; ) ⊆ ∞(), ∀N ∈ ℕ.
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• ∞(; ) is control invariant under xt+1 = Axt + But, ut ∈  .
In other words, if x0 ∈ ∞(; ), then the system can be driven from x0 to , and

be kept there, by an admissible control sequence. For any control invariant set  ⊆  ,
it holds that ∞(; ) ⊆ ∞( ; ). Moreover, ∞( ; ) ⧵ ∞(; ) includes all
initial states from which it is not possible to steer the system to the stabilizable region
∞(; ), and thereby to the target set . Trajectories that begin in ∞( ; ) can be
kept in  , but it is not necessarily possible to drive the state to some given target inside
 . An algorithm for computing ∞(; ) is given by Algorithm 5.
Algorithm 5 Computation of ∞( ; ), where  is some given controlled invariant
target set.

0 ← 
for j = 1, 2,… do

j ← Prec (j−1) ∩ 
if j = j−1 then

∞( ; )← j
return ∞( ; )

end if
end for

Note, that Algorithm 5 does not necessarily terminate in finite time. Now, assume that
we have designed a terminal set T in an MPC formulation. It follows that ∞(T ; )
is the set of initial states that will be admissible for the MPC controller.
Example 3.5. Consider again the linear system

xt+1 =
(

1.5 0
1 −1.5

)

xt +
(

1
0

)

ut (3)

subject to the input and state constraints

xt ∈  =
{

x ∈ ℝ2
|

|

|

|

|

[

−10
−10

]

≤ x ≤
[

10
10

]}

, ∀t ≥ 0

ut ∈  = {u ∈ ℝ | −5 ≤ u ≤ 5}, ∀t ≥ 0

The aim is to determine optimal input sequences. To that end, consider the following
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constrained infinite-horizon optimal control formulation

minimize
{uk}∞k=0

∞
∑

k=0
xTkQ1xk + uTkQ2uk

s.t. xk+1 =
(

1.5 0
1 −1.5

)

xk +
(

1
0

)

uk, k = 0,… ,∞

xk ∈  , k = 0,… ,∞
uk ∈  , k = 0,… ,∞
x0 = x

(4)

where the penalty matrices are given by

Q1 =
(

10 0
0 1

)

, Q2 = 1.

As (4) is an infinite dimensional quadratic program, there is no immediate solution. We
will approach this problem in several steps. First, consider the unconstrained variant

minimize
{uk}∞k=0

∞
∑

k=0
xTkQ1xk + uTkQ2uk

s.t. xk+1 =
(

1.5 0
1 −1.5

)

xk +
(

1
0

)

uk

x0 = x

for which there is a closed form solution given by the discrete-time linear-quadratic
regulator. The resulting discrete LQR controller is given by

ut = −L∞xt

where
L∞ =

(

0.211 1.6928
)

and the optimal cost is given by xTPx, where

P =
(

8.35 −10.56
−10.56 20.64

)

It is not certain that the resulting input sequence is admissible for every starting point x0.Hence, a good approach could be to characterize the state-space for which L∞ feedback
is optimal also for (4). Consider the following set

 = ( ◦L) ∩X = {x ∈  | −5 ≤ −L∞x ≤ 5}

15



In other words,  contains precisely those states in  that results in admissible inputs
under the feedback L∞.  is shown in Figure 5.
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Figure 5:  and  .

Hence,  could be a good candidate for a target set, as it would be possible to apply
optimal feedback input to the system. However, it is not certain that the system will stay
in  under the feedback L∞. To that end, we compute ∞() under xt+1 = (A−BL∞)xtusing Algorithm 3. The result is shown in Figure 6.
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Figure 6: ∞() under xt+1 = (A − BL∞)xt and  .

From the theory just presented, we know that if the system is driven to ∞() itcan be kept there using the optimal feedback law ut = −L∞xt. In fact, it can be shownthat the system will eventually be stabilized by this feedback. Hence, we introduce the
terminal set

f = ∞()

Now, we reformulate (4) into a finite-horizon problem as follows

minimize
u0,…,uN−1

N−1
∑

k=0
xTkQ1xk + uTkQ2uk + xTNPxN

s.t. xk+1 =
(

1.5 0
1 −1.5

)

xk +
(

1
0

)

uk, k = 0,… , N − 1

xk ∈  , k = 0,… , N
uk ∈  , k = 0,… , N − 1
xN ∈ f

x0 = x

(5)

We have shown thatf is input admissible and control invariant under xt+1 = (A−BL∞)xt.Hence, it follows that
xTNPxN =

∞
∑

k=N
xTkQ1xk + uTkQ2uk
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so that equivalence with (4) holds. The only remaining question is if (5) is feasible.
Specifically, given a starting state x0 ∈  , does there exists an admissible input sequence
that steers the system to f without ever leaving ? This notion is captured exactly by
∞(f ; ), which can be computed using Algorithm 5. It turns out that K∞( ; ) =
∞( ; ). The target set is shown together with the set of feasible initial states in
Figure 7.
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Figure 7: f , ∞(f ; ) under xt+1 = Axt + But and  .

It holds that (5) only has a feasible solution for x0 ∈ ∞( ; ). For instance, it is
readily verified (using your favorite optimization modeling language) that (5) is infeasible
if for instance x0 =

(

5 −5
). In contrast, (5) is solvable if for instance x0 =

(

−9 −3.5
).

A solution to (5) is shown for this particular x0, andN = 7, in Figure 8.
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Figure 8: f , ∞(f ; ) under xt+1 = Axt + But and  . Also, the optimal solution
trajectory to (5) whenN = 7 and x0 = (−9 − 3.5) is shown.
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